Log in

Abstract

A stochastic SIR epidemic model taking into account the heterogeneity of the spatial environment is constructed. The deterministic model is given by a partial differential equation and the stochastic one by a space-time jump Markov process. The consistency of the two models is given by a law of large numbers. In this paper, we study the deviation of the spatial stochastic model from the deterministic model by a functional central limit theorem. The limit is a distribution-valued Ornstein–Uhlenbeck Gaussian process, which is the mild solution of a stochastic partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Blount, D.J.: Limit theorems for a sequence of nonlinear reaction–diffusion systems. Stoch. Process. Appl. 45(2), 193–207 (1993)

    Article  MathSciNet  Google Scholar 

  3. Britton, T., Pardoux, E.: Stochastic Epidemic Models with Inference, Lecture notes in Math. 2255. Springer (2019)

  4. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: The Gradient Discretisation Method. Springer, New York (2018)

    Book  Google Scholar 

  5. Joffe, A., Metivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18(1), 20–65 (1986)

    Article  MathSciNet  Google Scholar 

  6. Kermack, W.O., McKendrick, A.G.: Proc. Roy. Soc. A 115 , 700. Reprinted in Bull. Math. Biol. 53, 33 (1991)

  7. Kotelenez, P.: Gaussian approximation to the nonlinear reaction–diffusion equation. Report 146, Universität Bremen Forschungsschwerpunkt Dynamische Systemes (1986)

  8. Kotelenez, P.: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stoch. Anal. Appl. 2(3), 245–265 (1984)

    Article  MathSciNet  Google Scholar 

  9. Kurtz, T.G.: Limit theorems for sequences of of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, 344–356 (1971)

    Article  MathSciNet  Google Scholar 

  10. N’zi, M., Pardoux, E., Yeo, T.: A SIR model on a refining spatial grid I. Law of large numbers. Appl. Math. Optim. 83, 1153–1189 (2021)

    Article  MathSciNet  Google Scholar 

  11. Taylor, M.E.: Partial Differential Equations III Nonlinear Equations. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgements

The author Ténan Yeo would like to thank the Marseille Mathematics Institute (I2M) for funding his stay in Marseille, during which part of this work was carried out.

Funding

The authors were supported by their respective university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ténan Yeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and no competing interests. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Lemma A.1

Let \((h_\varepsilon )_{0<\varepsilon <1}\) be a sequence of \(\texttt{H}_{\varepsilon }\). If \((h_\varepsilon )_{0<\varepsilon <1}\) is bounded in \(\textrm{H}^{1,\varepsilon }\), then it is relatively compact in \(L^2\), and the limit of any convergent subsequence belongs to \(\textrm{H}^{1}\).

Proof

By using the fact that the sequence \((h_\varepsilon )\) is bounded in \(L^2\) and \(\big \Vert \nabla _{\!\!\varepsilon }^+h_\varepsilon \big \Vert _{L^2}\le C\big \Vert h_\varepsilon \big \Vert _{_{\textrm{H}^{1}}}\), then the result of the compactness follows from the compactness theorem of Kolmogorov in \(L^2\).

The fact the limit of any convergent subsequence belong to \(\textrm{H}^{1}\), follows from the discrete integrating by part

$$\begin{aligned} \int _{\mathbb {T}^1}\nabla _{\!\!\varepsilon }^+h_\varepsilon (x)\varphi (x)dx= -\langle \, \int _0^. h_\varepsilon (y)dy\; , \; \nabla _{\!\!\varepsilon }^+\varphi \; \rangle , \end{aligned}$$

and letting \(\varepsilon \) go to zero in this equation. \(\square \)

Lemma A.2

For all \(\displaystyle u_{\varepsilon } \in \texttt{H}_{\varepsilon } \)

\( \displaystyle \big \Vert \nabla _{\!\!\varepsilon }^- u_{\varepsilon }\big \Vert _{_{\textrm{H}^{-\gamma , \varepsilon }}}^2 = \big \Vert \nabla _{\!\!\varepsilon }^+ u_{\varepsilon }\big \Vert _{_{\textrm{H}^{-\gamma , \varepsilon }}}^2= \sum _m \left( \langle \,u_{\varepsilon } , \varphi _{m}^{\varepsilon }\,\rangle ^2 + \langle \,u_{\varepsilon } , \psi _{m}^{\varepsilon }\,\rangle ^2 \right) \lambda _{m}^{\varepsilon }(1+\lambda _{m}^{\varepsilon })^{-\gamma }. \)

Proof

We have

$$\begin{aligned} \nabla ^-_{\!\!\varepsilon } \varphi _m^{\varepsilon } = -b_{m,\varepsilon } \varphi _m^{\varepsilon }- a_{m,\varepsilon }\psi _m^{\varepsilon } \; \; \text { and } \; \; \nabla ^-_{\!\!\varepsilon } \psi _m^{\varepsilon } = a_{m,\varepsilon } \varphi _m^{\varepsilon }-b_{m,\varepsilon }\psi _m^{\varepsilon }, \end{aligned}$$

where \(a_{m,\varepsilon }=\varepsilon ^{-1}\sin (\pi m\varepsilon )\) and \(b_{m,\varepsilon }=\varepsilon ^{-1} (\cos (\pi m\varepsilon )-1)\).

We have

$$\begin{aligned} a_{m,\varepsilon }^2+b_{m,\varepsilon }^2=\lambda _m^{\varepsilon }. \end{aligned}$$

Let \(\displaystyle u_{\varepsilon } \in \texttt{H}_{\varepsilon } \). We have

$$\begin{aligned}{} & {} \big \Vert \nabla _{\!\!\varepsilon }^+ u_{\varepsilon }\big \Vert _{_{\textrm{H}^{-\gamma , \varepsilon }}}^2\\{} & {} \quad =\sum _m\left( \langle \, u_{\varepsilon },\nabla _{\!\!\varepsilon }^- \varphi _m\, \rangle ^2 + \langle \, u_{\varepsilon } , \nabla _{\!\!\varepsilon }^- \psi _m \,\rangle ^2\right) (1+\lambda _m^{\varepsilon })^{-\gamma } \\{} & {} \quad =\sum _m\left( \langle \, u_{\varepsilon }, -b_{m,\varepsilon }\varphi _m^{\varepsilon }-a_{m,\varepsilon } \psi _m^{\varepsilon } \,\rangle ^2+\langle \, u_{\varepsilon }, a_{m,\varepsilon } \varphi _m^{\varepsilon }-b_{m,\varepsilon } \psi _m^{\varepsilon } \,\rangle ^2\right) (1+\lambda _m^{\varepsilon })^{-\gamma } \\{} & {} \quad =\sum _m\left( [-b_{m,\varepsilon } \langle \, u_{\varepsilon },\varphi _m^{\varepsilon }\,\rangle -a_{m,\varepsilon }\langle \, u_{\varepsilon }, \psi _m^{\varepsilon } \,\rangle ]^2+[a_{m,\varepsilon }\langle \, u_{\varepsilon },\varphi _m^{\varepsilon }\,\rangle -b_{m,\varepsilon } \langle \, u_{\varepsilon }, \psi _m^{\varepsilon }\,\rangle ]^2\right) \\{} & {} \qquad \times (1+\lambda _m^{\varepsilon })^{-\gamma } \\{} & {} \quad =\sum _m\left( [a_{m,\varepsilon }^2+b_{m,\varepsilon }^2]\{\langle \, u_{\varepsilon },\varphi _m^{\varepsilon }\,\rangle ^2+\langle \, u_{\varepsilon }, \psi _m^{\varepsilon }\,\rangle ^2\}\right) (1+\lambda _m^{\varepsilon })^{-\gamma } \\{} & {} \quad =\sum _m\left( \langle \, u_{\varepsilon }, \varphi _m^{\varepsilon }\,\rangle ^2+\langle \, u_{\varepsilon }, \psi _m^{\varepsilon }\,\rangle ^2\right) \lambda _m^\varepsilon (1+\lambda _m^{\varepsilon })^{-\gamma } . \end{aligned}$$

The proof of \(\displaystyle \big \Vert \nabla _{\!\!\varepsilon }^- u_{\varepsilon }\big \Vert _{_{\textrm{H}^{-\gamma , \varepsilon }}}^2 = \sum _m \left( \langle \,u_{\varepsilon } , \varphi _{m}^{\varepsilon }\,\rangle ^2 + \langle \,u_{\varepsilon } , \psi _{m}^{\varepsilon }\,\rangle ^2 \right) \lambda _{m}^{\varepsilon }(1+\lambda _{m}^{\varepsilon })^{-\gamma } \) is similar by noting that

$$\begin{aligned} \nabla ^+_{\!\!\varepsilon } \varphi _m^{\varepsilon } = b_{m,\varepsilon } \varphi _m^{\varepsilon }- a_{m,\varepsilon }\psi _m^{\varepsilon } \; \; \text { and } \; \; \nabla ^+_{\!\!\varepsilon } \psi _m^{\varepsilon } = a_{m,\varepsilon } \varphi _m^{\varepsilon }+b_{m,\varepsilon }\psi _m^{\varepsilon }. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallouët, T., Pardoux, É. & Yeo, T. A SIR epidemic model on a refining spatial grid II-central limit theorem. Stoch PDE: Anal Comp (2024). https://doi.org/10.1007/s40072-024-00333-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40072-024-00333-0

Keywords

Mathematics Subject Classification

Navigation