Log in

Analytic validation of convolutional neural network-based classification of pigmented skin lesions (PSLs) using unseen PSL hyperspectral data for clinical applications

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we aimed not only to analyze model performance of the convolutional neural network (CNN)-based pigmented skin lesion (PSL) classification, but also analyze the analytic validation of the CNN-based PSL classification using unseen PSL hyperspectral dataset with an FNR. To this end, 38 hyperspectral imaging (HSI) data samples were obtained from 19 patients diagnosed with PSLs based on biopsy results. The analytic validation dataset comprised both seen and unseen PSL datasets. The seen PSL dataset included 272,677 pixels from 32 HSI data samples, and the unseen PSL dataset included 370,820 pixels from 38 HSI data samples. A snapshot-based hyperspectral camera captured the spectral (2048 × 2048 pixels) and spatial (150 spectral bands, 470–900 nm) data. A dermatologist labeled the acquired HSI data as pigmented basal cell carcinoma (BCC), melanoma, and squamous cell carcinoma (SCC) to obtain hyperspectral data for each PSL class in software. A confusion matrix and specific performance metrics were used to evaluate CNN-based PSL classification performance. The false negative ratio (FNR) for melanoma were 0.0284 ± 0.0051 and 0.4317 ± 0.0269 for seen and unseen PSL dataset, respectively. Furthermore, 49.14% of the unseen SCC hyperspectral data was predicted as BCC. We confirmed unseen SCC hyperspectral data was most commonly confused for BCC. Therefore, we confirmed the feasibility of analytic validation of the CNN-based PSL classification using unseen PSL hyperspectral dataset for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. H. Tsao, J.M. Olazagasti, K.M. Cordoro, J.D. Brewer, S.C. Taylor, J.S. Bordeaux, M.M. Chren, A.J. Sober, C. Tegeler, R. Bhushan, W.S. Begolka, Early detection of melanoma: reviewing the ABCDEs. J. Am. Acad. Dermatol. 72, 717–723 (2015). https://doi.org/10.1016/j.jaad.2015.01.025

    Article  Google Scholar 

  3. J.E. Gershenwald, R.A. Scolyer, K.R. Hess, V.K. Sondak, G.V. Long, M.I. Ross, A.J. Lazar, M.B. Faries, J.M. Kirkwood, G.A. McArthur, L.E. Haydu, A.M.M. Eggermont, K.T. Flaherty, C.M. Balch, J.F. Thompson, for members of the American Joint Committee on Cancer Melanoma Expert Panel and the International Melanoma Database and Discovery Platform, melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 67, 472–492 (2017). https://doi.org/10.3322/caac.21409

    Article  Google Scholar 

  4. H. Fabelo, V. Melián, B. Martínez, P. Beltrán, S. Ortega, M. Marrero, G.M. Callicó, R. Sarmiento, I. Castaño, G. Carretero, P. Almeida, A. García, J.A. Hernández, F. Godtliebsen, Dermatologic hyperspectral imaging system for skin cancer diagnosis assistance. In 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS); 20–22 Nov 2019; Bilbao, Spain. IEEE. p. 1

  5. M. Combalia, N. Codella, V. Rotemberg, C. Carrera, S. Dusza, D. Gutman, B. Helba, H. Kittler, N.R. Kurtansky, K. Liopyris, M.A. Marchetti, S. Podlipnik, S. Puig, C. Rinner, P. Tschandl, J. Weber, A. Halpern, J. Malvehy, Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. Lancet Digit. Health. 4, e330–e339 (2022). https://doi.org/10.1016/S2589-7500(22)00021-8

    Article  Google Scholar 

  6. American Cancer Society, Cancer Facts & Figures 2022 (American Cancer Society, Atlanta, 2022)

    Google Scholar 

  7. N. Melarkode, K. Srinivasan, S.M. Qaisar, P. Plawiak, AI-powered diagnosis of skin cancer: a contemporary review, open challenges and future research directions. Cancers 15, 1183 (2023). https://doi.org/10.3390/cancers15041183

    Article  Google Scholar 

  8. T.J. Brinker, A. Hekler, J.S. Utikal, N. Grabe, D. Schadendorf, J. Klode, C. Berking, T. Steeb, A.H. Enk, C. von Kalle, Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20, e11936 (2018). https://doi.org/10.2196/11936

    Article  Google Scholar 

  9. R.C. Maron, M. Weichenthal, J.S. Utikal, A. Hekler, C. Berking, A. Hauschild, A.H. Enk, S. Haferkamp, J. Klode, D. Schadendorf, P. Jansen, T. Holland-Letz, B. Schilling, C. von Kalle, S. Fröhling, M.R. Gaiser, D. Hartmann, A. Gesierich, K.C. Kähler, U. Wehkamp, A. Karoglan, C. Bär, T.J. Brinker, Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 119, 57–65 (2019). https://doi.org/10.1016/j.ejca.2019.06.013

    Article  Google Scholar 

  10. M.K. Hasan, S. Roy, C. Mondal, M.A. Alam, M.T.E. Elahi, A. Dutta, S.M.T.U. Raju, T. Jawad, M. Ahmad, Dermo-DOCTOR: a framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders. Biomed. Signal Process. Control 68, 102661 (2021). https://doi.org/10.1016/j.bspc.2021.102661

    Article  Google Scholar 

  11. A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun, Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  ADS  Google Scholar 

  12. P. Tschandl, N. Codella, B.N. Akay, G. Argenziano, R.P. Braun, H. Cabo, D. Gutman, A. Halpern, B. Helba, R. Hofmann-Wellenhof, A. Lallas, J. Lapins, C. Longo, J. Malvehy, M.A. Marchetti, A. Marghoob, S. Menzies, A. Oakley, J. Paoli, S. Puig, C. Rinner, C. Rosendahl, A. Scope, C. Sinz, H.P. Soyer, L. Thomas, I. Zalaudek, H. Kittler, Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 20, 938–947 (2019). https://doi.org/10.1016/S1470-2045(19)30333-X

    Article  Google Scholar 

  13. P. Tschandl, C. Rinner, Z. Apalla, G. Argenziano, N. Codella, A. Halpern, M. Janda, A. Lallas, C. Longo, J. Malvehy, J. Paoli, S. Puig, C. Rosendahl, H.P. Soyer, I. Zalaudek, H. Kittler, Human–computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020). https://doi.org/10.1038/s41591-020-0942-0

    Article  Google Scholar 

  14. P. Tschandl, C. Rosendahl, B.N. Akay, G. Argenziano, A. Blum, R.P. Braun, H. Cabo, J.Y. Gourhant, J. Kreusch, A. Lallas, J. Lapins, A. Marghoob, S. Menzies, N.M. Neuber, J. Paoli, H.S. Rabinovitz, C. Rinner, A. Scope, H.P. Soyer, C. Sinz, L. Thomas, I. Zalaudek, H. Kittler, Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 155, 58–65 (2019). https://doi.org/10.1001/jamadermatol.2018.4378

    Article  Google Scholar 

  15. R. Leon, B. Martinez-Vega, H. Fabelo, S. Ortega, V. Melian, I. Castaño, G. Carretero, P. Almeida, A. Garcia, E. Quevedo, J.A. Hernandez, B. Clavo, G.M. Callico, Non-invasive skin cancer diagnosis using hyperspectral imaging for in-situ clinical support. J. Clin. Med. 9, 1662 (2020). https://doi.org/10.3390/jcm9061662

    Article  Google Scholar 

  16. J. Räsänen, M. Salmivuori, I. Pölönen, M. Grönroos, N. Neittaanmäki, Hyperspectral imaging reveals spectral differences and can distinguish malignant melanoma from pigmented basal cell carcinomas: a pilot study. Acta Derm. Venereol. 101, adv00405 (2021). https://doi.org/10.2340/00015555-3755

    Article  Google Scholar 

  17. I. Pölönen, S. Rahkonen, L. Annala, N. Neittaanmäki, Convolutional neural networks in skin cancer detection using spatial and spectral domain, Proc. SPIE 10851, Photonics in Dermatology and Plastic Surgery, 21–28 (2019) https://doi.org/10.1117/12.2509871

  18. B. Martinez-Vega, M. Tkachenko, M. Matkabi, S. Ortega, H. Fabelo, F. Balea-Fernandez, M. La Salvia, E. Torti, F. Leporati, G.M. Callico, C. Chalopin, Evaluation of preprocessing methods on independent medical hyperspectral databases to improve analysis. Sensors 22, 8917 (2022). https://doi.org/10.3390/s22228917

    Article  ADS  Google Scholar 

  19. L. Fulton, A. McLeod, D. Dolezel, N. Bastian, C.P. Fulton, Deep vision for breast cancer classification and segmentation. Cancers (Basel) 13, 5384 (2021). https://doi.org/10.3390/cancers13215384

    Article  Google Scholar 

  20. L. Di Biasi, F. De Marco, A. Auriemma Citarella, M. Castrillón-Santana, P. Barra, G. Tortora, Refactoring and performance analysis of the main CNN architectures: using false negative rate minimization to solve the clinical images melanoma detection problem. BMC Bioinform. 24, 386 (2023). https://doi.org/10.1186/s12859-023-05516-5

    Article  Google Scholar 

  21. H. Sujaini, E.Y. Ramadhan, H. Novriando, Comparing the performance of linear regression versus deep learning on detecting melanoma skin cancer using apple core ML. Bull. Electr. Eng. Inform. 10, 3110 (2021). https://doi.org/10.11591/eei.v10i6.3178

    Article  Google Scholar 

  22. T.H. Johansen, K. Møllersen, S. Ortega, H. Fabelo, A. Garcia, G.M. Callico, F. Godtliebsen, Recent advances in hyperspectral imaging for melanoma detection. Wiley Interdiscip. R. Comput. Stat. 12, e1465 (2020). https://doi.org/10.1002/wics.1465

    Article  MathSciNet  Google Scholar 

  23. S. Bechelli, J. Delhommelle, Machine learning and deep learning algorithms for skin cancer classification from dermoscopic images. Bioengineering 9, 97 (2022). https://doi.org/10.3390/bioengineering9030097

    Article  Google Scholar 

  24. J. Zhang, Y. Fan, Y. Song, J. Xu, Accuracy of Raman spectroscopy for differentiating skin cancer from normal tissue. Medicine 97, e12022 (2018). https://doi.org/10.1097/MD.0000000000012022

    Article  Google Scholar 

  25. S.K.T. Que, F.O. Zwald, C.D. Schmults, Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 78, 237–247 (2018). https://doi.org/10.1016/j.jaad.2017.08.059

    Article  Google Scholar 

  26. S. Feinstein, S. Higgins, O. Ahadiat, A. Wysong, A retrospective cohort study of cutaneous squamous cell carcinoma with lymph node metastasis: risk factors and clinical course. Dermatol. Surg. 45, 772–781 (2019). https://doi.org/10.1097/DSS.0000000000001828

    Article  Google Scholar 

  27. A. Jambusaria-Pahlajani, P.A. Kanetsky, P.S. Karia, W.T. Hwang, J.M. Gelfand, F.M. Whalen, R. Elenitsas, X. Xu, C.D. Schmults, Evaluation of AJCC tumor staging for cutaneous squamous cell carcinoma and a proposed alternative tumor staging system. JAMA Dermatol. 149, 402–410 (2013). https://doi.org/10.1001/jamadermatol.2013.2456

    Article  Google Scholar 

  28. I. Zalaudek, J. Giacomel, K. Schmid, S. Bondino, C. Rosendahl, S. Cavicchini, A. Tourlaki, S. Gasparini, P. Bourne, J. Keir, H. Kittler, L. Eibenschutz, C. Catricalà, G. Argenziano, Dermatoscopy of facial actinic keratosis, intraepidermal carcinoma, and invasive squamous cell carcinoma: a progression model. J. Am. Acad. Dermatol. 66, 589–597 (2012). https://doi.org/10.1016/j.jaad.2011.02.011

    Article  Google Scholar 

  29. H. Liu, S. Chen, F. Zhang, B. Shi, Z. Shi, D. Zhang, M. Yu, H. Tian, B. Yang, Seborrheic keratosis or verruca plana? A pilot study with confocal laser scanning microscopy. Skin Res. Technol. 16, 408–412 (2010). https://doi.org/10.1111/j.1600-0846.2010.00444.x

    Article  Google Scholar 

  30. T.H. Ryu, H. Kye, J.E. Choi, H.H. Ahn, Y.C. Kye, S.H. Seo, Features causing confusion between basal cell carcinoma and squamous cell carcinoma in clinical diagnosis. Ann. Dermatol. 30, 64–70 (2018). https://doi.org/10.5021/ad.2018.30.1.64

    Article  Google Scholar 

  31. K. Hauser, A. Kurz, S. Haggenmüller, R.C. Maron, C. von Kalle, J.S. Utikal, F. Meier, S. Hobelsberger, F.F. Gellrich, M. Sergon, A. Hauschild, L.E. French, L. Heinzerling, J.G. Schlager, K. Ghoreschi, M. Schlaak, F.J. Hilke, G. Poch, H. Kutzner, C. Berking, M.V. Heppt, M. Erdmann, S. Haferkamp, D. Schadendorf, W. Sondermann, M. Goebeler, B. Schilling, J.N. Kather, S. Fröhling, D.B. Lipka, A. Hekler, E. Krieghoff-Henning, T.J. Brinker, Explainable artificial intelligence in skin cancer recognition: a systematic review. Eur. J. Cancer 167, 54–69 (2022). https://doi.org/10.1016/j.ejca.2022.02.025

    Article  Google Scholar 

  32. D.C. Araújo, A.A. Veloso, R.S. de Oliveira Filho, M.N. Giraud, L.J. Raniero, L.M. Ferreira, R.A. Bitar, Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning. Artif. Intell. Med. 120, 102161 (2021). https://doi.org/10.1016/j.artmed.2021.102161

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.co.kr) for English language editing.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1G1A1003584) and Korea University (No. K1925071, No. K2310601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nam Kwon Lee or Suk Lee.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, E.J., Park, C.G., Chang, K.H. et al. Analytic validation of convolutional neural network-based classification of pigmented skin lesions (PSLs) using unseen PSL hyperspectral data for clinical applications. J. Korean Phys. Soc. 84, 889–897 (2024). https://doi.org/10.1007/s40042-024-01069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01069-9

Keywords

Navigation