Log in

Calculation of the Berry curvature and Chern number of topological photonic crystals

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

A Publisher Erratum to this article was published on 19 July 2022

This article has been updated

Abstract

In this paper, numerical calculations of the Berry curvature and Chern number of two types of two-dimensional photonic crystals consisting isotropic dielectric and anisotropic magneto-optical, gyromagnetic, rods in air in a square lattice are studied. The Chern number, an integer number, is a key parameter to distinguish between trivial and non-trivial photonic crystals. Trivial and non-trivial photonic crystals reveal zero and non-zero Chern numbers. A non-zero Chern number is achieved through the breaking of time-reversal and inversion symmetries. The results for two-dimensional photonic crystals containing isotropic dielectric and gyromagnetic materials under TM mode illustrate zero and 0, 1, -2, and -1 Chern numbers for the first four bands, respectively. The creation of non-zero Chern numbers brings a new way of designing one-way, robust to arbitrary disorder, and zero back-reflection photonic components

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. S. Jahani, Z. Jacob, Nat. Nanotechnol 11, 23 (2016)

    Article  ADS  Google Scholar 

  2. K. Koshelev, Y. Kivshar, ACS Photon. 8, 102 (2020)

    Article  Google Scholar 

  3. T. Baba, Nat. Photon. 2, 465 (2008)

    Article  ADS  Google Scholar 

  4. M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Nat. Commun. 6, 1 (2015)

    Article  Google Scholar 

  5. S. Jahani, Z. Jacob, Optica 1, 96 (2014)

    Article  ADS  Google Scholar 

  6. K. Goudarzi, Opt. Express 29, 32951 (2021)

    Article  ADS  Google Scholar 

  7. K. Goudarzi, A. Mir, I. Chaharmahali, D. Goudarzi, Opt. Laser Technol. 78, 139 (2016)

    Article  ADS  Google Scholar 

  8. K. Goodarzi, A. Mir, Infrared Phys. Technol. 68, 193 (2015)

    Article  ADS  Google Scholar 

  9. K. Goudarzi, J. Russian Laser Res. 38, 459 (2017)

    Article  Google Scholar 

  10. K. Aidinis, O. M. Daraei, K. Goudarzi, Photonics and Nanostructures-Fundamentals and Applications 43, 100880 (2021)

  11. M.H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons, Scient. Rep. 9, 1 (2019)

    Article  Google Scholar 

  12. Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, Y. **e, M.H. Tahersima, D.K. Jha, K. Parsons, M. Qi, Laser Photo. Rev. 14, 2000287 (2020)

    Article  ADS  Google Scholar 

  13. K. Goudarzi, M. Lee, Results Phys. 34, 105268 (2022)

  14. Y. Xu, J. Huang, L. Yang, H. Ma, H. Yuan, T. **e, J. Yang, Z. Zhang, Scient. Rep. 11, 1, 105268 (2021)

  15. A. Herrero-Bermello, J.M. Luque-González, A.V. Velasco, A. Ortega-Moñux, P. Cheben, R. Halir, IEEE Photo. J. 11, 1, 105268 (2019)

  16. M. Ma, A.H. Park, Y. Wang, H. Shoman, F. Zhang, N.A. Jaeger, L. Chrostowski, Opt. Express 27, 17581, 105268 (2019)

  17. C. Liu, M.V. Rybin, P. Mao, S. Zhang, Y. Kivshar, Phys. Rev. Lett. 123, 163901 (2019)

  18. L. Lu, J.D. Joannopoulos, M. Soljačić, Nat. Photo. 8, 821, 163901 (2014)

  19. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405, 163901 (1982)

  20. F. Haldane, S. Raghu, Phys. Rev. Lett. 100, 013904 (2008)

  21. A.B. Khanikaev, G. Shvets, Nat. Photo. 11, 763, 013904 (2017)

  22. M. Kim, Z. Jacob, J. Rho, Light: Science & Applications 9, 1 (2020)

  23. D.V. Zhirihin, Y.S. Kivshar, Small Sci. 1, 2100065, 013904 (2021)

  24. Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljačić, Phys. Rev. Lett. 100, 013905 (2008)

  25. R. Zhao, G.-D. **e, M.L. Chen, Z. Lan, Z. Huang, E. Wei, Opt. Express 28, 4638, 013905 (2020)

  26. C. Wang, H. Zhang, H. Yuan, J. Zhong, C. Lu, Front. Optoelectron. 13, 73, 013905 (2020)

Download references

Acknowledgements

We wish to acknowledge the financial support from the BK21 FOUR program and Educational Institute for Intelligent Information Integration, Samsung Electronics Co., Ltd (IO201211-08121-01), and Samsung Science and Technology Foundation (SRFC-TC2103-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiyanoush Goudarzi or Moonjoo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliations were incorrectly assigned and should be as follows: Kiyanoush Goudarzi 1 · Hatef Ghannadi Maragheh 2 · Moonjoo Lee 1. 1 Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 37673 Pohang, Republic of Korea. 2 Institut für Festkörperphysik, Leibniz Universität Hannover, Hannover, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, K., Maragheh, H.G. & Lee, M. Calculation of the Berry curvature and Chern number of topological photonic crystals. J. Korean Phys. Soc. 81, 386–390 (2022). https://doi.org/10.1007/s40042-022-00530-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00530-x

Keywords

Navigation