Log in

Asymmetric Joule heating effect on a monolayer MoS2 device measured by a thermal imaging microscope

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Layered transition-metal dichalcogenides (TMDs) materials, which currently provide the most ideal two-dimensional (2D) semiconductor channels, have limited performance due to unavoidable interfacial defects caused by bottom–up processes. These defects act as carrier scattering sources in a 2D channel, causing Joule heat losses. We investigated Joule heating effects on CVD grown monolayer MoS2 field-effect transistors (FETs) by measuring thermal characteristics according to minute voltage conditions using an infrared (IR) thermal microscope and analyzed it based on the 3D heat transfer simulation. We confirmed that the temperature distribution is non-uniform and maximum temperature of the channel increases due to the asymmetry of the charge distribution when the transistor operated in the saturation mode. The maximum temperature as a function of input power density initially shows the linear relationship and gradually becomes more non-linear as input power increases, and the non-linearity becomes more pronounced at the negative drain-source bias conditions. Our results demonstrate the importance of charge distribution during device operation as well as total input power in thermal analysis studies based on 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Xu, C. Liu, Z. Sun, T. Cao, Z. Zhang, E. Wang, Z. Liu, K. Liu, Chem. Soc. Rev. 47, 3059–3099 (2018)

    Article  Google Scholar 

  2. J.-Y. Xu, J.-S. Yu, J.-H. Liao, X.-B. Yang, C.-Y. Wu, Y. Wang, L. Wang, C. **e, L.-B. Luo, ACS Appl. Mater. Interfaces. 11, 21702–21710 (2019)

    Article  Google Scholar 

  3. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820–823 (2009)

    Article  ADS  Google Scholar 

  4. J.-K. Lee, S. Yamazaki, H. Yun, J. Park, G.P. Kennedy, G.-T. Kim, O. Pietzsch, R. Wiesendanger, S. Lee, S. Hong, U. Dettlaff-Weglikowska, S. Roth, Nano Lett. 13, 3494–3500 (2013)

    Article  ADS  Google Scholar 

  5. J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 5, 190–194 (2010)

    Article  ADS  Google Scholar 

  6. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770–775 (2007)

    Article  ADS  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  8. S. Fathipour, N. Ma, W.S. Hwang, V. Protasenko, S. Vishwanath, H.G. **ng, H. Xu, D. Jena, J. Appenzeller, A. Seabaugh, Appl. Phys. Lett. 105, 192101 (2014)

    Article  ADS  Google Scholar 

  9. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102–1120 (2014)

    Article  Google Scholar 

  10. K.-A.N. Duerloo, M.T. Ong, E.J. Reed, J. Phys. Chem. Lett. 3, 2871–2876 (2012)

    Article  Google Scholar 

  11. R. Peng, Y. Ma, Q. Wu, B. Huang, Y. Dai, Nanoscale 11, 11413–11428 (2019)

    Article  Google Scholar 

  12. D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Nat. Mater. 18, 541–549 (2019)

    Article  ADS  Google Scholar 

  13. Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W.-B. Jian, K. Ueno, K. Tsukagoshi, Adv. Mater. 26, 3263–3269 (2014)

    Article  Google Scholar 

  14. S. Lee, Z. Zhong, Nanoscale 6, 13283–13300 (2014)

    Article  ADS  Google Scholar 

  15. J.F. Gonzalez-Marin, D. Unuchek, K. Watanabe, T. Taniguchi, A. Kis, NPJ 2D Mater. Appl. 3, 14 (2019)

    Article  Google Scholar 

  16. M. Tosun, S. Chuang, H. Fang, A.B. Sachid, M. Hettick, Y. Lin, Y. Zeng, A. Javey, ACS Nano 8, 4948–4953 (2014)

    Article  Google Scholar 

  17. S.A. Svatek, C. Bueno-Blanco, D.-Y. Lin, J. Kerfoot, C. Macías, M.H. Zehender, I. Tobías, P. García-Linares, T. Taniguchi, K. Watanabe, P. Beton, E. Antolín, Nano Energy 79, 105427 (2021)

    Article  Google Scholar 

  18. T. Kawanago, W. Du, R. Ikoma, T. Oba, H. Takagi, S. Oda, Transfer printing of nanostructured membrane with elastomeric stamp and its application to TMDC-based field-effect transistors, in 2017 17th international workshop on junction technology (IWJT), pp. 40–43 (2017)

  19. H.G. Ji, P. Solís-Fernández, D. Yoshimura, M. Maruyama, T. Endo, Y. Miyata, S. Okada, H. Ago, Adv. Mater. 31, 1903613 (2019)

    Article  Google Scholar 

  20. Y.Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M.M. Furchi, T. Mueller, T. Grasser, 2D Materials 3, 035004 (2016)

    Article  Google Scholar 

  21. J. Roh, I.-T. Cho, H. Shin, G. Woo Baek, B. Hee Hong, J.-H. Lee, S. Hun **, C. Lee, Nanotechnology 26, 455201 (2015)

    Article  Google Scholar 

  22. S. Wi, M. Chen, D. Li, H. Nam, E. Meyhofer, X. Liang, Appl. Phys. Lett. 107, 062102 (2015)

    Article  ADS  Google Scholar 

  23. M.-H. Bae, Z.-Y. Ong, D. Estrada, E. Pop, Nano Lett. 10, 4787–4793 (2010)

    Article  ADS  Google Scholar 

  24. M.-H. Bae, S. Islam, V.E. Dorgan, E. Pop, ACS Nano 5, 7936–7944 (2011)

    Article  Google Scholar 

  25. E. Yalon, C.J. McClellan, K.K.H. Smithe, M. Muñoz Rojo, R.L. Xu, S.V. Suryavanshi, A.J. Gabourie, C.M. Neumann, F. **ong, A.B. Farimani, E. Pop, Nano Lett. 17, 3429–3433 (2017)

    Article  ADS  Google Scholar 

  26. D. Lembke, A. Kis, ACS Nano 6, 10070–10075 (2012)

    Article  Google Scholar 

  27. M.J. Mleczko, R.L. Xu, K. Okabe, H.-H. Kuo, I.R. Fisher, H.S.P. Wong, Y. Nishi, E. Pop, ACS Nano 10, 7507–7514 (2016)

    Article  Google Scholar 

  28. K.K.H. Smithe, C.D. English, S.V. Suryavanshi, E. Pop, Nano Lett. 18, 4516–4522 (2018)

    Article  ADS  Google Scholar 

  29. C. Kim, S. Issarapanacheewin, I. Moon, K.Y. Lee, C. Ra, S. Lee, Z. Yang, W.J. Yoo, Adv. Electron. Mater. 6, 1900964 (2020)

    Article  Google Scholar 

  30. N. Killat, M. Kuball, T.M. Chou, U. Chowdhury, J.L. Jimenez, 2010 IEEE international reliability physics symposium, pp. 528–531 (2010)

  31. T. Batten, A. Manoi, M.J. Uren, T. Martin, M. Kuball, J. Appl. Phys. 107, 074502 (2010)

    Article  ADS  Google Scholar 

  32. D.G. Cahill, K. Goodson, A. Majumdar, J. Heat Transf. 124, 223–241 (2001)

    Article  Google Scholar 

  33. Y. Lee, S. Park, H. Kim, G.H. Han, Y.H. Lee, J. Kim, Nanoscale 7, 11909–11914 (2015)

    Article  ADS  Google Scholar 

  34. A. Valsaraj, J. Chang, A. Rai, L.F. Register, S.K. Banerjee, 2D Materials 2, 045009 (2015)

    Article  Google Scholar 

  35. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Nano Lett. 13, 1991–1995 (2013)

    Article  ADS  Google Scholar 

  36. Y. Du, H. Liu, A.T. Neal, M. Si, D.Y. Peide, IEEE Electron Device Lett. 34, 1328–1330 (2013)

    Article  ADS  Google Scholar 

  37. A. Rai, A. Valsaraj, H.C.P. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, L.F. Register, E. Tutuc, S.K. Banerjee, Nano Lett. 15, 4329–4336 (2015)

    Article  ADS  Google Scholar 

  38. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, Nano Lett. 14, 6275–6280 (2014)

    Article  ADS  Google Scholar 

  39. C.J. McClellan, E. Yalon, K.K.H. Smithe, S.V. Suryavanshi, E. Pop, Effective n-type do** of monolayer MoS2 by AlOx, in 2017 75th annual device research conference (DRC), pp. 1–2 (2017)

  40. A. Leonhardt, D. Chiappe, V.V. Afanas’ev, S. El Kazzi, I. Shlyakhov, T. Conard, A. Franquet, C. Huyghebaert, S. de Gendt, A.C.S. Appl, Mater. Interfaces 11, 42697–42707 (2019)

    Article  Google Scholar 

  41. A. Meersha, B. Sathyajit, M. Shrivastava, A systematic study on the hysteresis behaviour and reliability of MoS2 FET, in 2017 30th international conference on VLSI design and 2017 16th international conference on embedded systems (VLSID), pp. 437–440 (2017)

  42. D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, C.N.R. Rao, ACS Nano 6, 5635–5641 (2012)

    Article  Google Scholar 

  43. W. Liu, D. Sarkar, J. Kang, W. Cao, K. Banerjee, ACS Nano 9, 7904–7912 (2015)

    Article  Google Scholar 

  44. B. Öner, J.W. Pomeroy, M. Kuball, ACS Appl. Electron. Mater. 2, 93–102 (2020)

    Article  Google Scholar 

  45. A. Sarua, J. Hangfeng, M. Kuball, M.J. Uren, T. Martin, K.P. Hilton, R.S. Balmer, IEEE Trans. Electron Devices 53, 2438–2447 (2006)

    Article  ADS  Google Scholar 

  46. L. Dobusch, S. Schuler, V. Perebeinos, T. Mueller, Adv. Mater. 29, 1701304 (2017)

    Article  Google Scholar 

  47. R. Kitamura, L. Pilon, M. Jonasz, Appl. Opt. 46, 8118–8133 (2007)

    Article  ADS  Google Scholar 

  48. R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, G. Roelkens, Sensors 17, 1788 (2017)

    Article  ADS  Google Scholar 

  49. S. Park, A.T. Garcia-Esparza, H. Abroshan, B. Abraham, J. Vinson, A. Gallo, D. Nordlund, J. Park, T.R. Kim, L. Vallez, R. Alonso-Mori, D. Sokaras, X. Zheng, Adv. Sci. 8, 2002768 (2021)

    Article  Google Scholar 

  50. D.M. Sim, M. Kim, S. Yim, M.-J. Choi, J. Choi, S. Yoo, Y.S. Jung, ACS Nano 9, 12115–12123 (2015)

    Article  Google Scholar 

  51. G.P. Neupane, K.P. Dhakal, H. Kim, J. Lee, M.S. Kim, G. Han, Y.H. Lee, J. Kim, J. Appl. Phys. 120, 051702 (2016)

    Article  ADS  Google Scholar 

  52. W.L. Spychalski, M. Pisarek, R. Szoszkiewicz, J. Phys. Chem. C 121, 26027–26033 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2020 Research Fund of the University of Ulsan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun** Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Park, S., Suh, D. et al. Asymmetric Joule heating effect on a monolayer MoS2 device measured by a thermal imaging microscope. J. Korean Phys. Soc. 80, 619–627 (2022). https://doi.org/10.1007/s40042-022-00439-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00439-5

Keywords

Navigation