Log in

Evaluation of Surface Response of Ficus Benghalensis Fiber—Epoxy Composites Under Dry Sliding Wear Conditions

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

In the current investigation chopped Ficus benghalensis (commonly known as banyan), fiber reinforced polymer matrix composite (PMCs) was prepared by hand layup technique. This work includes the surface response of these PMCs to the dry sliding wear at room temperature. Chemically extracted fibers are reinforced into the epoxy matrix in different weight proportions (2, 4 and 6 wt %) with continuous stirring action. A pin-on-disk sliding wear tester is used to estimate the sliding wear response of the newly fabricated PMCs. Sliding wear assessments are prepared as per the experimental design based on Taguchi’s L9 orthogonal array in order to spot predominantly dominant factors affecting the wear rate. This investigation shows that the fiber content is the most major factor followed by the sliding velocity, sliding distance and applied load on the sliding wear rate of examined PMCs. It was observed that the wear rate increases with an increase in impact velocity, whereas it reduces with an increase in fiber content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.A. Brydson, Plastics Materials, vol. 7 (Butterworth-Heinemann, UK, 1999)

    Google Scholar 

  2. K. Friedrich, Advances in Composites Tribology, Composite Materials Series, vol. 8 (Elsevier, Amsterdam, 1993)

    Google Scholar 

  3. M.F. Ashby, D.R.H. Jones, Engineering Materials 2: An Introduction to Microstructures, Processing and Design, vol. 3 (Butterworth-Heinemann, UK, 2006)

    Google Scholar 

  4. K. Friedrich, Friction and Wear of Polymer Composites, vol. 1 (Elsevier Science Publishers, Amsterdam, 1986), pp. 233–287

    Google Scholar 

  5. J. Bijwe, J.J. Rajesh, A. Jeyakumar, A. Ghosh, U.S. Tewari, Tribo. Int. 33, 697–706 (2000)

    Article  Google Scholar 

  6. S.N. Kukureka, C.J. Hooke, M. Rao, P. Liao, Y.K. Chen, Tribo. Int. 32, 107–116 (1999)

    Article  Google Scholar 

  7. A.S. Singha, V.K. Thakur, Bull. Mater. Sci. 31(5), 791–799 (2008)

    Article  Google Scholar 

  8. R.G. Padmanabhan, M. Ganapathy, Int. J. Res. Appl. Sci. Eng. Technol. 3, 426–432 (2015)

    Google Scholar 

  9. A.K. Sinha, H.K. Narang, S. Bhattacharya, J. Polym. Eng. 37(9), 879–895 (2017)

    Article  Google Scholar 

  10. M.K. Gupta, A. Bharti, Curr. Trends FashionTechnol. Text. Eng. 1(3), 1–4 (2017)

    Google Scholar 

  11. S. Dixit, R. Goel, A. Dubey, P.R. Shivhare, T. Bhalavi, Polym. Renew. Resour. 8, 71–78 (2017)

    Google Scholar 

  12. G.H. Michler, F.J. Baltá-Calleja, Mechanical Properties of Polymers Based on Nanostructure and Morphology (CRC Press, New York, 2005), pp. 547–596

    Google Scholar 

  13. T. Vijay Kumar, K.V. Ramana, R.B. Chowdary, Int. J. Adv. Eng. Stud. 1(1), 256–258 (2012)

    Google Scholar 

  14. R.G. Padmanabha, G. Umashankar, Global J. Eng Sci. Res Manage 2(12), 106–112 (2015)

    Google Scholar 

  15. S. Arun Prasath, V. Balamurugan, S. Sanjay Ganesh, A. Udhaya Murthy, In: Inst. Phys. Conf. Ser.: Mater. Sci. Eng., 402, 012135 (2018).

  16. T. Raja, P. Anand, J. Test. Eval. 48(1), 647–655 (2020)

    Google Scholar 

  17. M.N. Islam, A. Pramanik, J. Adv. Manuf. Syst. 15(3), 151–160 (2016)

    Article  Google Scholar 

  18. X. Li, L.G. Tabil, S. Panigrahi, J. Polym. Environ. 15, 25–33 (2007)

    Article  Google Scholar 

  19. ASTM G99–17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus (ASTM International, West Conshohocken, PA, 2017)

    Google Scholar 

  20. Sandhyarani Biswas (2010) Processing, Characterization and Wear Response of Particulate Filled Epoxy Based Hybrid Composites. Ph.D. Thesis, National Institute of Technology Rourkela, Odisha, India.

  21. S. Kumar, V.K. Patel, K.K.S. Mer, B. Gangil, T. Singh, G. Fekete, J. Nat. Fibers (2019). https://doi.org/10.1080/15440478.2019.1612814

    Article  Google Scholar 

  22. Y.Z. Wan, G.C. Chen, S. Raman, J.Y. **n, Q.Y. Li, Y. Huang, Y.L. Wang, H.L. Luo, Wear 260, 933–941 (2006)

    Article  Google Scholar 

  23. A. Purohit, A. Satapathy, J. Compos. Mater. 51(7), 899–911 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimant Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, C., Mishra, S.K. & Purohit, A. Evaluation of Surface Response of Ficus Benghalensis Fiber—Epoxy Composites Under Dry Sliding Wear Conditions. J. Inst. Eng. India Ser. E 103, 47–52 (2022). https://doi.org/10.1007/s40034-020-00182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-020-00182-1

Keywords

Navigation