Log in

An Improved Gossip based Ad-hoc On-Demand Distance Vector Protocol for Efficient Neighbour Node Discovery

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Recently, mobile low duty cycle wireless sensor network (MLDC-WSN) is being widely used in many areas, due to the rapid development in the fields of wireless communication and microelectronics. In MLDC-WSN, node localization is important in many applications such as underwater sensor networks, monitoring of objects in outdoor and indoor environments. The major requirement in node localization is to allocate a location to every sensor node since multiple nodes in MLDC-WSN ares utilized for retrieving sensitive information. The main aim of this research study is to address the localization issues using improved gossip-ad hoc on-demand distance vector protocol for an efficient neighbor node discovery. The improved gossip protocol enhances the neighbor node detection by eliminating redundant information, and the ad hoc on-demand distance vector (AODV) routing protocol is used to effectively transmit the information from a source node to the base station. In addition to this, the improved gossip-AODV protocol significantly prevents the issues created by the clock drift of the nodes. Though delay during the data transmission is reduced by avoiding the clock drift issue. The improved gossip-AODV has reduced discovery delay of 0.05, energy consumption, and wake-up time better as compared to the existing selective proactive wake-up fast neighbor discovery (SPND) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.S. Rao, P.K. Jana, H. Banka, A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor network. Wirel. Netw. 23(7), 2005–2020 (2017). https://doi.org/10.1007/s11276-016-1270-7

    Article  Google Scholar 

  2. Z.X. Wang, M. Zhang, X. Gao, W. Wang, X. Li, A clustering WSN routing protocol based on node energy and multipath. Clust. Comput. 22(3), 5811–5823 (2019). https://doi.org/10.1007/s10586-017-1550-8

    Article  Google Scholar 

  3. H. Zhu, M. Luo, Hybrid robust sequential fusion estimation for wsns-assisted moving targets localization with sensor node position uncertainty. IEEE Trans. Instrum. Meas. (2020). https://doi.org/10.1109/TIM.2020.2967875

    Article  Google Scholar 

  4. S. Phoemphon, C. So-In, N. Leelathakul, Fuzzy weighted centroid localization with virtual node approximation in wireless sensor networks. IEEE Internet Things J. 5(6), 4728–4752 (2018). https://doi.org/10.1109/JIOT.2018.2811741

    Article  Google Scholar 

  5. K. **ao, Z. Chen, C. Yang, Estimate information fusion weight of wsns nodes based on truth discovery optimization method among conflicting sources of data. IEEE Access 7, 35606–35618 (2019). https://doi.org/10.1109/ACCESS.2019.2897794

    Article  Google Scholar 

  6. L. Cheng, J. Hang, Y. Wang, Y. Bi, A fuzzy C-means and hierarchical voting based RSSI quantify localization method for wireless sensor network. IEEE Access 7, 47411–47422 (2019). https://doi.org/10.1109/ACCESS.2019.2909974

    Article  Google Scholar 

  7. S. Dutta, M.S. Obaidat, K. Dahal, D. Giri, S. Neogy, M-MEMHS: modified minimization of error in multihop system for localization of unknown sensor nodes. IEEE Syst. J. 139(1), 215–225 (2018). https://doi.org/10.1109/JSYST.2018.2868231

    Article  Google Scholar 

  8. H.J. Shao, X.P. Zhang, Z. Wang, Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Trans. Sig. Process. 62(10), 2580–2594 (2014). https://doi.org/10.1109/TSP.2014.2314064

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Singh, N. Mittal, An efficient localization approach for WSNs using hybrid DA-FA algorithm. IET Commun. (2020). https://doi.org/10.1049/iet-com.2019.1311

    Article  Google Scholar 

  10. Y. Zhang, Y.I. Wu, Multiple sources localization by the WSN using the direction-of-arrivals classified by the genetic algorithm. IEEE Access 7, 173626–173635 (2019). https://doi.org/10.1109/ACCESS.2019.2956825

    Article  Google Scholar 

  11. A. Singh, A. Nagaraju, Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN. Ad Hoc Netw. (2020). https://doi.org/10.1016/j.adhoc.2020.102182

    Article  Google Scholar 

  12. L. Wei, B. Zhou, X. Ma, D. Chen, J. Zhang, J. Peng, Q. Luo, L. Sun, D. Li, L. Chen, Lightning: a high-efficient neighbor discovery protocol for low duty cycle WSNs. IEEE Commun. Lett. 20(5), 966–969 (2016). https://doi.org/10.1109/LCOMM.2016.2536018

    Article  Google Scholar 

  13. L. Wei, W. Sun, H. Chen, P. Yuan, F. Yin, Q. Luo, Y. Chen, L. Chen, A fast neighbor discovery algorithm in WSNs. Sensors 18(10), 3319 (2018). https://doi.org/10.3390/s18103319

    Article  Google Scholar 

  14. F. Shahzad, T.R. Sheltami, E.M. Shakshuki, Multi-objective optimization for a reliable localization scheme in wireless sensor networks. J. Commun. Netw. 18(5), 796–805 (2016). https://doi.org/10.1109/JCN.2016.000108

    Article  Google Scholar 

  15. F.S. Bao, Y. Pang, W.J. Zhou, W. Jiang, Y. Yang, Y. Liu, C. Qian, Coverage-based lossy node localization for wireless sensor networks. IEEE Sens. J. 16(11), 4648–4656 (2016). https://doi.org/10.1109/JSEN.2016.2541159

    Article  Google Scholar 

  16. P. Chen, Y. Chen, S. Gao, Q. Niu, J. Gu, Efficient group-based discovery for wireless sensor networks. Int. J. Distrib. Sens. Netw. (2017). https://doi.org/10.1177/1550147717719056

    Article  Google Scholar 

  17. Y. Zhang, L. Wei, M. Guo, W. Wang, Y. Sun, J. Wang, L. Chen, VN-NDP: a neighbor discovery protocol based on virtual nodes in mobile WSNs. Sensors 19(21), 4739 (2019). https://doi.org/10.3390/s19214739

    Article  Google Scholar 

  18. P.R. Gautam, S. Kumar, A. Verma, A. Kumar, Energy-efficient localisation of sensor nodes in WSNs using single beacon node. IET Commun. 14(9), 1459–1466 (2020). https://doi.org/10.1049/iet-com.2019.1298

    Article  Google Scholar 

  19. Y. Cao, Z. Wang, Improved DV-hop localization algorithm based on dynamic anchor node set for wireless sensor networks. IEEE Access 7, 124876–124890 (2019). https://doi.org/10.1109/ACCESS.2019.2938558

    Article  Google Scholar 

  20. O.A. Saraereh, I. Khan, B.M. Lee, An efficient neighbor discovery scheme for mobile WSN. IEEE Access 7, 4843–4855 (2018). https://doi.org/10.1109/ACCESS.2018.2886779

    Article  Google Scholar 

  21. H. Chen, Y. Qin, K. Lin, Y. Luan, Z. Wang, J. Yu, Y. Li, PWEND: Proactive wakeup based energy-efficient neighbor discovery for mobile sensor networks. Ad Hoc Netw. (2020). https://doi.org/10.1016/j.adhoc.2020.102247

    Article  Google Scholar 

  22. Z. Gu, Z. Cao, Z. Tian, Y. Wang, X. Du, G. Mohsen, A low-latency and energy-efficient neighbor discovery algorithm for wireless sensor networks. Sensors 20(3), 657 (2020). https://doi.org/10.3390/s20030657

    Article  Google Scholar 

  23. Q. Ren, Y. Zhang, I. Nikolaidis, J. Li, Y. Pan, RSSI quantization and genetic algorithm based localization in wireless sensor networks. Ad Hoc Netw. (2020). https://doi.org/10.1016/j.adhoc.2020.102255

    Article  Google Scholar 

  24. H. Xu, Semi-supervised manifold learning based on polynomial map** for localization in wireless sensor networks. Signal Process. (2020). https://doi.org/10.1016/j.sigpro.2020.107570

    Article  Google Scholar 

  25. L. Wang, M.J. Er, S. Zhang, A kernel extreme learning machines algorithm for node localization in wireless sensor networks. IEEE Commun. Lett. (2020). https://doi.org/10.1109/LCOMM.2020.2986676

    Article  Google Scholar 

  26. L. Jian Yin, New distance vector-hop localization algorithm based on half-measure weighted centroid. Mob. Inf. Syst. (2019). https://doi.org/10.1155/2019/9892512

    Article  Google Scholar 

  27. R. Jiang, X. Wang, L. Zhang, Localization algorithm based on iterative centroid estimation for wireless sensor networks. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/5456191

    Article  Google Scholar 

  28. X. Zhang, J. Fang, F. Meng, An efficient node localization approach with RSSI for randomly deployed wireless sensor networks. J. Elect. Comp. Eng. (2016). https://doi.org/10.1155/2016/2080854

    Article  Google Scholar 

  29. O’Keefe, B. (2017). Finding Location with Time of Arrival and Time Difference of Arrival Techniques. ECE Senior Capstone Project.

  30. M. Malajner, D. Gleich, P. Planinšič, Angle of arrival estimation algorithms using received signal strength indicator. Informacije MIDEM 45(4), 237–248 (2015)

    Google Scholar 

  31. A. Bhatiya, A. Tilwankar, D. Lambhate, M.K.A. Kumar, Detection and prevention of sink hole attack in aodv protocol for wireless sensor network. Int. Res. J. Eng. Technol. 4(5), 2192–2201 (2017)

    Google Scholar 

  32. Q.M. Yaseen, M. Aldwairi, An enhanced AODV protocol for avoiding black holes in MANET. Procedia. Comp. Sci. 134, 371–376 (2018). https://doi.org/10.1016/j.procs.2018.07.196

    Article  Google Scholar 

  33. A. Ram, J.P. Singh, A secured and associated congestion hybrid AODA protocol in WSN networks using MANETS. Euro. J. Mol. Clin. Med. 7(4), 369–375 (2020)

    Google Scholar 

  34. Ferreira, B. C., Fonte, V., & Silva, J. M. C. (2020). EAGP: An Energy-Aware Gossip Protocol for Wireless Sensor Networks. In 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 1–6. doi: https://doi.org/10.23919/SoftCOM50211.2020.9238155.

  35. S. Sahana, R. Bose, D. Sarddar, An enhanced search optimization proposal based on gossip protocol for the cloud. Int. J. Appl. Eng. Res. 12(19), 8436–8442 (2017)

    Google Scholar 

  36. S. Aditya Kumar, S. Gandharba, An improved data hiding technique using bit differencing and LSB matching. Internetworking Indones. J. 10, 17–21 (2018)

    Google Scholar 

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sravankumar Bethi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bethi, S., Moparthi, N.R. An Improved Gossip based Ad-hoc On-Demand Distance Vector Protocol for Efficient Neighbour Node Discovery. J. Inst. Eng. India Ser. B 103, 351–360 (2022). https://doi.org/10.1007/s40031-021-00654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00654-x

Keywords

Navigation