Log in

Recent advances in the formulation of sphingolipid anticancer therapeutics

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

The bioactive sphingolipids such as ceramide, sphingosine, and sphingosine-1-phosphate are of special interest as key regulators of cellular proliferation or apoptosis signaling. The balance between ceramide and sphingosine-1-phosphate is critical for the selection of proliferative or apoptotic signaling as well as for therapeutic efficacy against cancer cells.

Area covered

A number of drug candidates designed to regulate the balance between ceramide and sphingosine-1-phosphate have been developed and several (i.e., safingol, ABC294640, Sonepcizumab, and fingolimod) are under clinical investigation as anti-cancer drugs. Various nanotherapeutic challenges combined with the use of anticancer drugs and/or phospholipid metabolism inhibitors and short chain ceramide has been investigated to increase the cellular accumulation of ceramide, which acts as apoptotic signaling molecules.

Expert opinion

Many sphingolipid-containing nanotherapeutics have shown promising results as cancer treatments. These sphingolipid nanotherapeutics can include a synergistic combination of short chain ceramide and ceramide-forming anticancer agents or sphingolipid metabolism inhibitors. Sphingolipid nanotherapeutics could also be used to treat multidrug-resistant cancer cells as well as sensitive cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Allen TM, Hansen C, Rutledge J (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Baran Y, Bielawski J, Gunduz U, Ogretmen B (2011) Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol 137(10):1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Barth BM, Cabot MC, Kester M (2011) Ceramide-based therapeutics for the treatment of cancer. Anticancer Agents Med Chem 11(9):911–919

    Article  CAS  PubMed  Google Scholar 

  • Barth BM, Gustafson SJ, Young MM, Fox TE, Shanmugavelandy SS, Kaiser JM, Cabot MC, Kester M, Kuhn TB (2010a) Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biol Ther 10(11):1126–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth BM, Sharma R, Altinoglu EI, Morgan TT, Shanmugavelandy SS, Kaiser JM, Mcgovern C, Matters GL, Smith JP, Kester M, Adair JH (2010b) Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano 4(3):1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielawska A, Bielawski J, Szulc ZM, Mayroo N, Liu X, Bai A, Elojeimy S, Rembiesa B, Pierce J, Norris JS, Hannun YA (2008) Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorgan Med Chem 16(2):1032–1045

    Article  CAS  Google Scholar 

  • Buehrer BM, Bell RM (1992) Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem 267(5):3154–3159

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chan AY, Stone DU, Mandal NA (2014) Beyond the cherry-red spot: ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 59(1):64–76

    Article  PubMed  Google Scholar 

  • Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ (2019) Co-delivery of doxorubicin and ceramide in a liposomal formulation enhances cytotoxicity in murine B16BL6 melanoma cell lines. Aaps Pharmscitech 20(3):99

    Article  CAS  PubMed  Google Scholar 

  • Choi MK, Lee J, Nam SJ, Kang YJ, Han YJ, Choi K, Choi YA, Kwon M, Lee D, Song IS (2017) Pharmacokinetics of Jaspine B and enhancement of intestinal absorption of Jaspine B in the presence of bile acid in rats. Mar Drugs 15(9):e279

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Hartung HP (2010) Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 33(2):91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. Febs Lett 503(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, Obeid LM, Hannun YA (1998) p53-dependent ceramide response to genotoxic stress. J Clin Invest 102(2):329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devalapally H, Duan ZF, Seiden MV, Amiji MM (2007) Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 121(8):1830–1838

    Article  CAS  PubMed  Google Scholar 

  • Di Bartolomeo S, Agostini A, Spinedi A (2015) Differential apoptotic effect and metabolism of N-acetylsphingosine and N-hexanoylsphingosine in CHP-100 human neurotumor cells. Biochem Biophys Res Commun 458(3):456–461

    Article  PubMed  CAS  Google Scholar 

  • Elojeimy S, Liu X, Mckillop JC, El-Zawahry AM, Holman DH, Cheng JY, Meacham WD, Mahdy AEM, Saad AF, Turner LS, Cheng J, Day TA, Dong JY, Bielawska A, Hannun YA, Norris JS (2007) Role of acid ceramidase in resistance to FasL: therapeutic approaches based on acid ceramidase inhibitors and FasL gene therapy. Mol Ther 15(7):1259–1263

    Article  CAS  PubMed  Google Scholar 

  • Feingold KR (2007) The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 48(12):2531–2546

    Article  CAS  PubMed  Google Scholar 

  • Fillet M, Bentires-Alj M, Deregowski V, Greimers R, Gielen J, Piette J, Bours V, Merville MP (2003) Mechanisms involved in exogenous C2- and C6-ceramide-induced cancer cell toxicity. Biochem Pharmacol 65(10):1633–1642

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122(4):1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6(7):489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garidel P, Folting B, Schaller I, Kerth A (2010) The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys Chem 150(1–3):144–156

    Article  CAS  PubMed  Google Scholar 

  • Giussani P, Bassi R, Anelli V, Brioschi L, De Zen F, Riccitelli E, Caroli M, Campanella R, Gaini SM, Viani P, Riboni L (2012) Glucosylceramide synthase protects glioblastoma cells against autophagic and apoptotic death induced by temozolomide and paclitaxel. Cancer Invest 30(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Guillou S, Ghabri S, Jannot C, Gaillard E, Lamour I, Boisnic S (2011) The moisturizing effect of a wheat extract food supplement on women's skin: a randomized, double-blind placebo-controlled trial. Int J Cosmetic Sci 33(2):138–143

    Article  CAS  Google Scholar 

  • Haddadi N, Lin YG, Simpson AM, Nassif NT, Mcgowan EM (2017) "Dicing and splicing" sphingosine kinase and relevance to cancer. Int J Mol Sci 18(9):1891

    Article  PubMed Central  CAS  Google Scholar 

  • Haimovitzfriedman A, Kan CC, Ehleiter D, Persaud RS, Mcloughlin M, Fuks Z, Kolesnick RN (1994) Ionizing-radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180(2):525–535

    Article  CAS  Google Scholar 

  • Hakomori S, Igarashi Y (1995) Functional-role of glycosphingolipids in cell recognition and signaling. J Biochem 118(6):1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850

    Article  CAS  PubMed  Google Scholar 

  • Hill JR, Wertz PW (2009) Structures of the ceramides from porcine palatal stratum corneum. Lipids 44(3):291–295

    Article  CAS  PubMed  Google Scholar 

  • Holman DH, Turner LS, El-Zawahry A, Elojeimy S, Liu X, Bielawski J, Szulc ZM, Norris K, Zeidan YH, Hannun YA, Bielawska A, Norris JS (2008) Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemoth Pharm 61(2):231–242

    Article  CAS  Google Scholar 

  • Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF (2011) Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 25(10):3661–3673

    Article  CAS  PubMed  Google Scholar 

  • Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva MY, Obeid LM, Hannun YA (1995) Role for ceramide in cell-cycle arrest. J Biol Chem 270(5):2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Jiang YX, Divittore NA, Kaiser JM, Shanmugavelandy SS, Fritz JL, Heakal Y, Tagaram HRS, Cheng H, Cabot MC, Staveley-O'carroll KF, Tran MA, Fox TE, Barth BM, Kester M (2011) Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther 12(7):574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK, Zipkin RE, Dent P, Kordula T, Milstien S, Spiegel S (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69(17):6915–6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, Hannun YA, Obeid LM (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23(2):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoglu EI, Tabakovic A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH (2008) Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 8(12):4116–4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Aljarbou AN, Aldebasi YH, Alorainy MS, Rahmani AH, Younus H, Khan A (2018) Liposomal formulation of glycosphingolipids from Sphingomonas paucimobilis induces antitumour immunity in mice. J Drug Target 26(8):709–719

    Article  CAS  PubMed  Google Scholar 

  • Kharel Y, Mathews TP, Gellett AM, Tomsig JL, Kennedy PC, Moyer ML, Macdonald TL, Lynch KR (2011) Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 440:345–353

    Article  CAS  PubMed  Google Scholar 

  • Ko SY, Ko HJ, Chang WS, Park SH, Kweon MN, Kang CY (2005) alpha-galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol 175(5):3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Nishi T, Hirata T, Kihara A, Sano T, Igarashi Y, Yamaguchi A (2006) Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 47(3):614–621

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surf B 75(1):1–18

    Article  CAS  Google Scholar 

  • Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kus G, Kabadere S, Uyar R, Kutlu HM (2015) Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2. In Vitro Cell Dev-Anim 51(10):1056–1063

    Article  CAS  Google Scholar 

  • Kus G, Ozkurt M, Oztopcu Vatan P, Erkasap N, Uyar R, Kabadere S (2018) Comparison of a ceramidase inhibitor (ceranib-2) with C2 ceramide and cisplatin on cytotoxicity and apoptosis of glioma cells. Turk J Biol 42(3):259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P (2006) Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281(13):8518–8527

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Choi K, Kwon M, Lee D, Choi MK, Song IS (2016) Differential cytotoxic effects of Jaspine B in various cancer cells. J Life Sci 26(12):101–109

    Google Scholar 

  • Lee JY, Han SH, Park MH, Baek B, Song IS, Choi MK, Takuwa Y, Ryu H, Kim SH, He XX, Schuchman EH, Bae JS, ** HK (2018) Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer's Disease. Nat Commun 9(1):1479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Morad SaF, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13(1):51–65

    Article  CAS  PubMed  Google Scholar 

  • Morales A, Paris R, Villanueva A, Llavuna L, Garcia-Ruiz C, Fernandez-Checa JC (2007) Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene 26(6):905–916

    Article  CAS  PubMed  Google Scholar 

  • Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8(12):4108–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki S, Iwasaki T, Yuba E, Watarai S (2018) Evaluation of pH-sensitive fusogenic polymer-modified liposomes co-loaded with antigen and alpha-galactosylceramide as an anti-tumor vaccine. J Vet Med Sci 80(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Paschall AV, Zimmerman MA, Torres CM, Yang DF, Chen MR, Li X, Bieberich E, Bai AP, Bielawski J, Bielawska A, Liu KB (2014) Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer 14:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzirani D, Bach A, Realini N, Armirotti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M, Ribeiro A, Piomelli D (2015) Benzoxazolone carboxamides: potent and systemically active inhibitors of intracellular acid ceramidase. Angew Chem Int Ed Engl 54(2):485–489

    CAS  PubMed  Google Scholar 

  • Plano D, Amin S, Sharma AK (2014) Importance of sphingosine kinase (SphK) as a target in develo** cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J Med Chem 57(13):5509–5524

    Article  CAS  PubMed  Google Scholar 

  • Pyne S, Pyne NJ (2011) Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med 17(8):463–472

    Article  CAS  PubMed  Google Scholar 

  • Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MBA (2013) Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem 82:637–662

    Article  CAS  PubMed  Google Scholar 

  • Rotolo JA, Zhang JJ, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280(28):26425–26434

    Article  CAS  PubMed  Google Scholar 

  • Ruckhaberle E, Rody A, Engels K, Gaetje R, Von Minckwitz G, Schiffmann S, Grosch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112(1):41–52

    Article  PubMed  CAS  Google Scholar 

  • Saied EM, Arenz C (2014) Small molecule inhibitors of ceramidases. Cell Physiol Biochem 34(1):197–212

    Article  CAS  PubMed  Google Scholar 

  • Saied EM, Arenz C (2016) Inhibitors of ceramidases. Chem Phys Lipids 197:60–68

    Article  CAS  PubMed  Google Scholar 

  • Salma Y, Lafont E, Therville N, Carpentier S, Bonnafe MJ, Levade T, Genisson Y, Andrieu-Abadie N (2009) The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 78(5):477–485

    Article  CAS  PubMed  Google Scholar 

  • Santos WL, Lynch KR (2015) Drugging sphingosine kinases. ACS Chem Biol 10(1):225–233

    Article  CAS  PubMed  Google Scholar 

  • Selzner M, Bielawska A, Morse MA, Rudiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61(3):1233–1240

    CAS  PubMed  Google Scholar 

  • Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9(8):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siskind LJ, Colombini M (2001) The lipids C2-and C16-ceramide form large stable channels in membranes. Biophys J 80(1):499a–499a

    Google Scholar 

  • Snider AJ, Gandy KaO, Obeid LM (2010) Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 92(6):707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sot J, Goni FM, Alonso A (2005) Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochim Biophys Acta 1711(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277(29):25851–25854

    Article  CAS  PubMed  Google Scholar 

  • Stoica BA, Movsesyan VA, Lea PMT, Faden AI (2003) Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 22(3):365–382

    Article  CAS  PubMed  Google Scholar 

  • Stover T, Kester M (2003) Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther 307(2):468–475

    Article  CAS  PubMed  Google Scholar 

  • Stover TC, Sharma A, Robertson GP, Kester M (2005) Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 11(9):3465–3474

    Article  CAS  PubMed  Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192(5):601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KB, Ling LU, Bunte RM, Chng WJ, Chiu GNC (2014) Liposomal codelivery of a synergistic combination of bioactive lipids in the treatment of acute myeloid leukemia. Nanomedicine 9(11):1665–1679

    Article  CAS  PubMed  Google Scholar 

  • Van Hell AJ, Melo MN, Van Blitterswijk WJ, Gueth DM, Braumuller TM, Pedrosa LRC, Song JY, Marrink SJ, Koning GA, Jonkers J, Verheij M (2013) Defined lipid analogues induce transient channels to facilitate drug-membrane traversal and circumvent cancer therapy resistance. Sci Rep 3:1949

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Lummel M, Van Blitterswijk WJ, Vink SR, Veldman RJ, Van Der Valk MA, Schipper D, Dicheva BM, Eggermont AMM, Ten Hagen TLM, Verheij M, Koning GA (2011) Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors. FASEB J 25(1):280–289

    Article  PubMed  CAS  Google Scholar 

  • Van Meer G, Lisman Q (2002) Sphingolipid transport: rafts and translocators. J Biol Chem 277(29):25855–25858

    Article  PubMed  CAS  Google Scholar 

  • Van Vlerken LE, Duan ZF, Seiden MV, Amiji MM (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67(10):4843–4850

    Article  PubMed  Google Scholar 

  • Veldman RJ, Zerp S, Van Blitterswijk WJ, Verheij M (2004) N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Brit J Cancer 90(4):917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270(51):30701–30708

    Article  CAS  PubMed  Google Scholar 

  • Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH (1999) Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 129(7):1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Ding YF, Liu ZM, Liu XR, Chen L, Yan WL (2013) Bioactive lipids-based ph sensitive micelles for co-delivery of doxorubicin and ceramide to overcome multidrug resistance in leukemia. Pharm Res 30(11):2902–2916

    Article  CAS  PubMed  Google Scholar 

  • Yoo H, Lee YS, Lee S, Kim S, Kim TY (2012) Pachastrissamine from Pachastrissa sp. inhibits melanoma cell growth by dual inhibition of Cdk2 and ERK-mediated FOXO3 downregulation. Phytother Res 26(12):1927–1933

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Li JC, Qiu Y, Sun H (2012) 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, JNK activation, and inhibiting PI3K/AKT activation. Mol Cell Biochem 361(1–2):47–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Berka V, Song AR, Sun KQ, Wang W, Zhang WR, Ning C, Li CH, Zhang QB, Bogdanov M, Alexander DC, Milburn MV, Ahmed MH, Lin H, Idowu M, Zhang J, Kato GJ, Abdulmalik OY, Zhang WZ, Dowhan W, Kellems RE, Zhang PM, ** JP, Safo M, Tsai AL, Juneja HS, **a Y (2014) Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. J Clin Invest 124(6):2750–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolnik BS, Stern ST, Kaiser JM, Heakal Y, Clogston JD, Kester M, Mcneil SE (2008) Rapid distribution of liposomal short-chain ceramide in vitro and in vivo. Drug Metab Dispos 36(8):1709–1715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Im-Sook Song.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, MK., Song, IS. Recent advances in the formulation of sphingolipid anticancer therapeutics. J. Pharm. Investig. 50, 295–307 (2020). https://doi.org/10.1007/s40005-020-00475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00475-y

Keywords

Navigation