Log in

Alternative Biological Material for Tissue Engineering of the Vagina: Porcine-Derived Acellular Vaginal Matrix

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a severe congenital disorder characterized by vaginal hypoplasia caused by dysplasia of the Müllerian duct. Patients with MRKH syndrome often require nonsurgical or surgical treatment to achieve satisfactory vaginal length and sexual outcomes. The extracellular matrix has been successfully used for vaginal reconstruction.

Methods:

In this study, we developed a new biological material derived from porcine vagina (acellular vaginal matrix, AVM) to reconstruct the vagina in Bama miniature pigs. The histological characteristics and efficacy of acellularization of AVM were evaluated, and AVM was subsequently transplanted into Bama miniature pigs to reconstruct the vaginas.

Results:

Macroscopic analysis showed that the neovaginas functioned well in all Bama miniature pigs with AVM implants. Histological analysis and electrophysiological evidence indicated that morphological and functional recovery was restored in normal vaginal tissues. Scanning electron microscopy showed that the neovaginas had mucosal folds characteristics of normal vagina. No significant differences were observed in the expression of CK14, HSP47, and α-actin between the neovaginas and normal vaginal tissues. However, the expression of estrogen receptor (ER) was significantly lower in the neovaginas than in normal vaginal tissues. In addition, AVM promoted the expression of β-catenin, c-Myc, and cyclin D1. These results suggest that AVM might promotes vaginal regeneration by activating the β-catenin/c-Myc/cyclin D1 pathway.

Conclusion:

This study reveals that porcine-derived AVM has potential application for vaginal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available upon motivated request.

References

  1. Herlin MK, Petersen MB, Brannstrom M. Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: a comprehensive update. Orphanet J Rare Dis. 2020;15:214.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malcher A, Jedrzejczak P, Stokowy T, Monem S, Nowicka-Bauer K, Zimna A, et al. Novel mutations segregating with complete androgen insensitivity syndrome and their molecular characteristics. Int J Mol Sci. 2019;20:5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simman R, Jackson IT, Andrus L. Prefabricated buccal mucosa-lined flap in an animal model that could be used for vaginal reconstruction. Plast Reconstr Surg. 2002;109:1050–1.

    Article  Google Scholar 

  4. Hentrich T, Koch A, Weber N, Kilzheimer A, Maia A, Burkhardt S, et al. The endometrial transcription landscape of MRKH syndrome. Front Cell Dev Biol. 2020;8: 572281.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Both S, Kluivers K, Ten KM, Weijenborg P. Sexual response in women with Mayer-Rokitansky-Kuster-Hauser syndrome with a nonsurgical neovagina. Am J Obstet Gynecol. 2018;219:281–3.

    Article  Google Scholar 

  6. Zhou JH, Sun J, Yang CB, **e ZW, Shao WQ, ** HM. Long-term outcomes of transvestibular vaginoplasty with pelvic peritoneum in 182 patients with Rokitansky’s syndrome. Fertil Steril. 2010;94:2281–5.

    Article  PubMed  Google Scholar 

  7. Zhang M, Li S, Huang X, Du H, Wang C, Zhang L, et al. Transumbilical single-incision laparoscopic vaginoplasty hybrid transperineal approach using a sigmoid colon segment: initial twenty-five cases. Int Urol Nephrol. 2016;48:1401–6.

    Article  PubMed  Google Scholar 

  8. Lin WC, Chang CY, Shen YY, Tsai HD. Use of autologous buccal mucosa for vaginoplasty: a study of eight cases. Hum Reprod. 2003;18:604–7.

    Article  CAS  PubMed  Google Scholar 

  9. Wiser WL, Bates GW. Management of agenesis of the vagina. Surg Gynecol Obstet. 1984;159:108–12.

    CAS  PubMed  Google Scholar 

  10. Morton KE, Davies D, Dewhurst J. The use of the fasciocutaneous flap in vaginal reconstruction. Br J Obstet Gynaecol. 1986;93:970–3.

    Article  CAS  PubMed  Google Scholar 

  11. ACOG Committee Opinion No. 728: Mullerian agenesis: diagnosis, management and treatment. Obstet Gynecol. 2018;131:e35-42.

    Article  Google Scholar 

  12. Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, Lopez-Bayghen E, Valencia P, Ordorica-Flores R, et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384:329–36.

    Article  PubMed  Google Scholar 

  13. Zhu L, Zhou H, Sun Z, Lou W, Lang J. Anatomic and sexual outcomes after vaginoplasty using tissue-engineered biomaterial graft in patients with Mayer-Rokitansky-Kuster-Hauser syndrome: a new minimally invasive and effective surgery. J Sex Med. 2013;10:1652–8.

    Article  PubMed  Google Scholar 

  14. Zhang JK, Du RX, Zhang L, Li YN, Zhang ML, Zhao S, et al. A new material for tissue engineered vagina reconstruction: acellular porcine vagina matrix. J Biomed Mater Res a. 2017;105:1949–59.

    Article  CAS  PubMed  Google Scholar 

  15. Greco KV, Jones LG, Obiri-Yeboa I, Ansari T. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair. J Pediatr Adolesc Gynecol. 2018;31:473–9.

    Article  PubMed  Google Scholar 

  16. Hou C, Zheng J, Li Z, Qi X, Tian Y, Zhang M, et al. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int J Biol Macromol. 2021;180:177–86.

    Article  CAS  PubMed  Google Scholar 

  17. Verghese S, Su TT. Drosophila Wnt and STAT Define apoptosis-resistant epithelial cells for tissue regeneration after irradiation. Plos Biol. 2016;14:e1002536.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liang PY, Chang Y, ** G, Lian X, Bao X. Wnt signaling directs human pluripotent stem cells into vascularized cardiac organoids with chamber-like structures. Front Bioeng Biotechnol. 2022;10:1059243.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhong Y, Wang K, Zhang Y, Yin Q, Li S, Wang J, et al. Ocular Wnt/beta-catenin pathway inhibitor XAV939-loaded liposomes for treating alkali-burned corneal wound and neovascularization. Front Bioeng Biotechnol. 2021;9: 753879.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Liu F, Zhang Z, Zhang M, Cao S, Li Y, et al. Bone marrow mesenchymal stem cells could acquire the phenotypes of epithelial cells and accelerate vaginal reconstruction combined with small intestinal submucosa. Cell Biol Int. 2015;39:1225–33.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Zhang G, Le Y, Ju J, Zhang P, Wan D, et al. Quercetin promotes human epidermal stem cell proliferation through the estrogen receptor/beta-catenin/c-Myc/cyclin A2 signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2020;52:1102–10.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Z, Zhang Y, Zhang Y, Zhang H, Liu W, Zhang N, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through MicroRNAs in vitro. Hum Reprod. 2019;34:248–60.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Zhu Z, Hua K, Yao L, Liu Y, Ding J. Umbilical cord-derived mesenchymal stem cell transplantation in vaginal replacement in vitro and in a rat model. Am J Transl Res. 2018;10:3762–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. **ao Y, Tian Y, Zhang J, Li Q, Shi W, Huang X. Small intestinal submucosa promotes angiogenesis via the Hippo pathway to improve vaginal repair. Biomol Biomed. 2023;23:838–47.

    PubMed  Google Scholar 

  25. Choi YJ, Yi HG, Kim SW, Cho DW. 3D cell printed tissue analogues: a new platform for theranostics. Theranostics. 2017;7:3118–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D bioprinted implants for cartilage repair in intervertebral discs and knee menisci. Front Bioeng Biotechnol. 2021;9:754113.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tian Y, Zhao S, Zheng J, Li Z, Hou C, Qi X, et al. A stereological study of 3D printed tissues engineered from rat vaginas. Ann Transl Med. 2020;8:1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Del RA, Negro F, Piersanti V, Tini A. Uterus transplant update: innovative fertility solutions and the widening horizons of bioengineering. Eur Rev Med Pharmacol Sci. 2021;25:3405–10.

    Google Scholar 

  29. Campo H, Baptista PM, Lopez-Perez N, Faus A, Cervello I, Simon C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2017;96:34–45.

    Article  PubMed  Google Scholar 

  30. Campo H, Cervello I, Simon C. Bioengineering the uterus: an overview of recent advances and future perspectives in reproductive medicine. Ann Biomed Eng. 2017;45:1710–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Department of Gynecology at the Second Hospital of Hebei Medical University. This work was financially supported by the National Natural Science Foundation of China (No. 8167060210) and Improved Innovation Ability of the Hebei Obstetrics and Gynecology Clinical Medicine Research Centre (20577705D).

Author information

Authors

Contributions

(I) Conception and design: XH, JZ and YT; (II) Administrative support: None; (III) Surgical procedures: YT, YL, YX, ZL, MZ, WZ, ZZ, LM, YD; (IV) Animal anesthesia: LC, ZL and JG; (V)Collection and assembly of data: YL, DK; (VI) Data analysis and interpretation: YX, DK; (VII) Manuscript writing: All authors; (VIII) Final approval of manuscript: All authors.

Corresponding author

Correspondence to **anghua Huang.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Ethics statement

All animal experiments were approved by the Ethical Committee of Second Hospital of Hebei Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Liu, Y., **ao, Y. et al. Alternative Biological Material for Tissue Engineering of the Vagina: Porcine-Derived Acellular Vaginal Matrix. Tissue Eng Regen Med 21, 277–290 (2024). https://doi.org/10.1007/s13770-023-00604-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00604-2

Keywords

Navigation