Log in

Kinetics, isotherms and thermodynamics: iodine ion adsorption on Ag2O–titanate nanostructures

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Silver oxide titanate nanotubes (Ag2O@TNTs) and silver oxide titanate nanofibers (Ag2O@TNFs) were synthesized by hydrothermal method with high alkalinity and used as adsorbents to remove iodine ions from aqueous solutions. The synthesized adsorbents, characterized by using X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Transmission Electron Microscopy, and Brunauer–Emmett–Teller and Zeta-potential analysis. We evaluated iodine ion adsorption on Ag2O@TNTs and Ag2O@TNFs based on various factors like contact time, pH, initial concentration, adsorbent weight, and temperature through batch experiments. Our findings identified the optimal conditions for I ion adsorption: pH 7, an initial concentration of 100 mg L−1, 0.05 g of adsorbent per 20 ml, temperature = 25 ± 1 °C, and about 30 min of contact time. The pseudo-second-order model best describes the adsorption kinetics, and the Langmuir model fits the adsorption isotherms more closely. The maximum uptake capacity of I ions was found from the Langmuir model for I ions was 344.83 (mg g−1) and 277.77 (mg g−1) at 298 K and removal rates of 83.4% and 78.8%, for Ag2O@TNT and Ag2O@TNF, respectively. The separation factor (RL) value for Ag2O@TNT is 0.67 and for Ag2O@TNF is 0.65, which confirms the of favorability adsorption. Thermodynamic assessments show that both adsorbents undergo favorable, spontaneous, and endothermic adsorption processes, offering an efficient mechanism for I ion extraction from aqueous solutions. A comparative assessment revealed that titanate nanotubes outperform titanate nanofibers in terms of I ion adsorption capacity and efficiency.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Almarbd ZZ, Abbass NM (2022) Synthesis and characterization of TiO2, Ag2O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications. Eurasian Chem Commun 4:1033–1043

    CAS  Google Scholar 

  • Abbasizadeh S, Saeed AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  • Atta AM, Akl ZF (2015) Removal of thorium from water using modified magnetite nanoparticles capped with rosin amidoxime. Mater Chem Phys 163:253–261

    Article  CAS  Google Scholar 

  • Bo A et al (2013) Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J Hazard Mater 246:199–205

    Article  Google Scholar 

  • Chao D et al (2020) Comparison of Ag and Agi-modified zno as heterogeneous photocatalysts for simulated sunlight driven photodegradation of metronidazole. Catalysts 10:1097

    Article  Google Scholar 

  • Cheng H et al (2013) Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. J Mater Chem A 1:7131–7136

    Article  CAS  Google Scholar 

  • Chen Y-Y et al (2018) One-step synthesis of Ag2O@Mg(OH)2 nanocomposite as an efficient scavenger for iodine and uranium. J Colloid Interface Sci 510:280–291

    Article  CAS  Google Scholar 

  • Chmielewská-Horváthová E, Lesnỳ J (1995) Iodide adsorption on the surface of chemically pretreated clinoptilolite. J Radioanal Nucl Chem 200:351–363

    Article  Google Scholar 

  • Dada AO, Olalekan AP, Olatunya AM, Dada OJIJC (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

  • Davit P, Martra G, C OLUCCIA, S., (2004) Photocatalytic degradation of organic compounds on TiO2 powders, FT-IR investigation of surface reactivity and mechanistic aspect. J Jpn Petrol Inst 47:359–376

    Article  CAS  Google Scholar 

  • Decamp C, Happel S (2013) Utilization of a mixed-bed column for the removal of iodine from radioactive process waste solutions. J Radioanal Nucl Chem 298:763–767

    Article  CAS  Google Scholar 

  • ElShorafa R, Zhaoyang L, Said A (2023) Durable nanofiber-based membrane with efficient and consistent performance for oil/saltwater separation. Appl Sci 13(11):6792

    Article  CAS  Google Scholar 

  • Emadzadeh D et al (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243–251

    Article  CAS  Google Scholar 

  • Emran KM, Alsahli RMA (2021) Electrocatalytic hydrogen generation using sn loaded TiO2 nanotubes. Int J Electrochem Sci 16:21068

    Article  CAS  Google Scholar 

  • Erhayem M et al (2015) Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves. Am J Anal Chem 6:1

    Article  CAS  Google Scholar 

  • Filipowicz B, Pruszynski M, Krajewski S, Bilewicz A (2014) Adsorption of 137Cs on titanate nanostructures. J Radioanal Nucl Chem 301:889–895

    Article  CAS  Google Scholar 

  • GallardoáAmores JM, SanchezáEscribano V et al (1994) FT Raman and FTIR studies of titanias and metatitanate powders. J Chem Soc, Faraday Trans 90:3181–3190

    Article  Google Scholar 

  • Gao R, Lu Y, **ao S, Li J (2017) Facile fabrication of nanofibrillated Chitin/Ag2O heterostructured aerogels with high iodine capture efficiency. Sci Rep 7:4303

    Article  Google Scholar 

  • Ho Y-S, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hsin-Hung O, Shang-Lien S-L (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191

    Article  Google Scholar 

  • Ikari M et al (2015) Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon. Water Res 68:227–237

    Article  CAS  Google Scholar 

  • Ikeda Y et al (1994) Adsorption of I ions on cinnabar for 129I waste management. Radiochim Acta 65:195–198

    Article  Google Scholar 

  • Khan N, Burkitbayev M, Urakaev F (2019) Preparation and properties of nanocomposites in the systems S-AgI and S-Ag2S-AgI in Dimethyl Sulfoxide. IOP Conf Ser: Mater Sci Eng 704(1):012007

    Article  CAS  Google Scholar 

  • Korobeinyk AV, Satayeva AR, Chinakulova AN, Inglezakis VJ (2018) Iodide removal by use of Ag-modified natural zeolites. s.l., s.n., p. 012014

  • Kowanga KD, Gatebe E, Mauti GO, Mauti EM (2016) Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu (II) and Pb (II) using defatted Moringa oleifera seed powder. The J Phytopharm 5:71–78

    Article  Google Scholar 

  • Lefevre G, Alnot M, Ehrhardt JJ, Bessiere J (1999) Uptake of iodide by a mixture of metallic copper and cupric compounds. Environ Sci Technol 33:1732–1737

    Article  CAS  Google Scholar 

  • Lefèvre G, Bessière J, Ehrhardt J-J, Walcarius A (2003) Immobilization of iodide on copper (I) sulfide minerals. J Environ Radioact 70:73–83

    Article  Google Scholar 

  • Lefèvre G, Walcarius A, Ehrhardt J-J, Bessière J (2000) Sorption of iodide on cuprite (Cu2O). Langmuir 16:4519–4527

    Article  Google Scholar 

  • Li N et al (2012) Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv Func Mater 22:835–841

    Article  CAS  Google Scholar 

  • Liu J, Luo M, Yuan Z, ** A (2013a) Synthesis, characterization, and application of titanate nanotubes for Th (IV) adsorption. J Radioanal Nucl Chem 298:1427–1434

    Article  CAS  Google Scholar 

  • Liu J, Mingbiao L, Yuan Z, ** A (2013b) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioanal Nucl Chem 298:1427–1434

    Article  CAS  Google Scholar 

  • Liu S et al (2015) Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O–Ag/TiO2 composites under visible light irradiation. J Hazard Mater 284:171–181

    Article  CAS  Google Scholar 

  • Liu W, Sun W, Borthwick AGL, Ni J (2013c) Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: Influence of pH, ionic strength and natural organic matter. Physicochem Eng Asp 434:319–328

    Article  CAS  Google Scholar 

  • Mao P et al (2017) Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J Hazard Mater 328:21–28

    Article  CAS  Google Scholar 

  • Morad I, El-Desoky MM, Mansour A, Wasfy M (2020) Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol-gel technique. Journal of Materials Science Materials in Electronics, 27

  • Mostata, m., Ramadan, H. & EL. Amir, M., (2015) Sorption and desorption studies of radioiodine onto silver chloride via batch equilibration with its aqueous media. J Environ Radioact 150:9–19

    Article  Google Scholar 

  • Mu W et al (2016) Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers. Dalton Trans 45:753–759

    Article  CAS  Google Scholar 

  • Mu W et al (2017) Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution. J Alloy Compd 693:550–557

    Article  CAS  Google Scholar 

  • Nguyen N et al (2012) Simultaneous recovery of gold and iodine from the waste rinse water of the semiconductor industry using activated carbon. Mater Trans 53:760–765

    Article  CAS  Google Scholar 

  • Nhat HN, Hsunling B (2015) Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2. Appl Surf Sci 355:672–680

    Article  Google Scholar 

  • Okada K et al (2015) Macroporous titanate nanotube/TiO2 monolith for fast and large-capacity cation exchange. Chem Mater 27:1885–1891

    Article  CAS  Google Scholar 

  • Peng G-W, Chen S-K, Liu H-S (1995) Infrared absorption spectra and their correlation with the Ti-O bond length variations for TiO2 (Rutile), Na-Titanates, and Na-Titanosilicate (Natisite, Na2TiOSiO4). Appl Spectrosc 49:1646–1651

    Article  CAS  Google Scholar 

  • Piccin JS, Dotto GL, Pinto LAA (2011) Adsorption isotherms and thermochemical data of FD&C Red n 40 binding by chitosan. Braz J Chem Eng 28:295–304

    Article  CAS  Google Scholar 

  • Reghunath S, Pinheiro D, KR S (2021) A review of hierarchical nanostructures of TiO2: advances and applications. Appl Surf Sci Adv 3:2666–5239

    Article  Google Scholar 

  • Rodrigues CM, Ferreira OP, Alves OL (2010) Interaction of sodium titanate nanotubes with organic acids and base: chemical, structural and morphological stabilities. J Braz Chem Soc 21:1341–1348

    Article  CAS  Google Scholar 

  • Runan G, Yun GL, Shaoliang X, Jian L (2017) Facile fabrication of nanofibrillated Chitin/Ag2O heterostructured aerogels. Sci Rep. 1

  • Sarina S et al (2014) Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents. Chem Mater 26:4788–4795

    Article  CAS  Google Scholar 

  • Sheng G et al (2012) Adsorption of Eu (III) on titanate nanotubes studied by a combination of batch and EXAFS technique. Sci China Chem 55:182–194

    Article  CAS  Google Scholar 

  • Sun H et al (2015) Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity. Appl Surf Sci 343:181–187

    Article  CAS  Google Scholar 

  • Tatarchuk T, Shyichuk A, Mironyuk I, Naushad M (2019) A review on removal of uranium(VI) ions using titanium dioxide based sorbents. J Mol Liq 293:111563

    Article  CAS  Google Scholar 

  • Tri Yunarti R et al (2021) Study of Ag2O/TiO2 nanowires synthesis and characterization for heterogeneous reduction reaction catalysis of 4-nitrophenol. Nano-Struct & Nano-Objects 26:100719

    Article  Google Scholar 

  • Tsai C-C, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 18:367–373

    Article  CAS  Google Scholar 

  • Villavicencio M et al (2020) Ibuprofen photodegradation by Ag2O and Ag/Ag2O composites under simulated visible light irradiation. Catal Lett 150:2385–2399

    Article  Google Scholar 

  • Wang J et al (2022) Efficient capture of radioactive iodine by Ag-attached silica gel and its kinetics. Nucl Mater Energy 33:101270

    Article  CAS  Google Scholar 

  • Wenlin Y et al (2022a) Preparation of Halloysite/Ag2O Nanomaterials and Their Performance for Iodide Adsorption. Minerals 12(3):304

    Google Scholar 

  • Wenlin Y et al (2022b) Facile preparation of MCM-41/Ag2O nanomaterials with high iodide-removal efficiency. Nanomaterials 12(20):3678

    Article  Google Scholar 

  • Xu J et al (2012) Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures. Micro & Nano Letters, IET 7:654–657

    Article  Google Scholar 

  • Yang DJ et al (2008) Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater 20:2777–2781

    Article  CAS  Google Scholar 

  • Yang D et al (2013a) Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale 5:11011–11018

    Article  CAS  Google Scholar 

  • Yang D et al (2013b) Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale 5:2232–2242

    Article  CAS  Google Scholar 

  • Yang D et al (2011) Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed 50:10594–10598

    Article  CAS  Google Scholar 

  • Yang L et al (2016) Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR–MS) system. Sep Purif Technol 171:221–228

    Article  Google Scholar 

  • Yong NL, Ahmad A, Mohammad AW (2013) Synthesis and characterization of silver oxide nanoparticles by a novel method. Int J Sci Eng Res. 4

  • Yousefipour K, Janitabar Darzi S, Iravani E (2023) Schiff base-functionalized mesoporous titania: an efficient sorbent for the removal of radioactive thorium ions from aqueous solution. J Radioanal Nucl Chem 332:2447–2458

    Article  CAS  Google Scholar 

  • Yuan, et al (2016) Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system. Phys Chem Chem Phys 18:23246–23256

    Article  CAS  Google Scholar 

  • Yu F et al (2018) Enhanced removal of iodide from aqueous solution by ozonation and subsequent adsorption on Ag-Ag2O modified on Carbon Spheres. Appl Surf Sci 427:753–762

    Article  CAS  Google Scholar 

  • Zhang H et al (2012) Iodide adsorption onto three organic–inorganic composite adsorbents. Adsorpt Sci Technol 30:449–460

    Article  CAS  Google Scholar 

  • Zhang X, Gu P, Li X, Zhang G (2017) Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem Eng J 322:129–139

    Article  CAS  Google Scholar 

  • Zhang Y et al (2015) Titanate and Titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510

    Article  CAS  Google Scholar 

  • Zia MR et al (2021) Removal of radioactive iodine using silver/iron oxide composite nanoadsorbents. Nanomaterials 11:588

    Article  CAS  Google Scholar 

  • Zima TM, Baklanova NI, Utkin AV (2012) Hydrothermal synthesis of a nanostructured TiO2-based material in the presence of chitosan. Inorg Mater 48:821–826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the assistance of many The authors would like to thank the authorities of Nuclear Science and Technology Research Institute of Iran for equip** the laboratory, where this research work was carried out.

Author information

Authors and Affiliations

Authors

Contributions

Taraneh Mostatabi: Conceptualization, Methodology, Validation, Investigation, Formal analysis, Data curation, Writing—Original draft preparation A. Nilchi.: Supervision, Writing—Review & Editing, Project administration. A. H. Hassani: Visualization, Supervision, Review & Editing S. Janitabar Darzi: Methodology, Validation, Investigation, Writing—Review & Editing, Supervision.

Corresponding author

Correspondence to A. H. Hassani.

Ethics declarations

Conflict of interest

The data included in this manuscript have yet to be published previously. All authors declare that they have no confict of interest.

Additional information

Editorial responsibility: S.Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostatabi, T., Hassani, A.H., Janitabar Darzi , S. et al. Kinetics, isotherms and thermodynamics: iodine ion adsorption on Ag2O–titanate nanostructures. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05795-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05795-2

Keywords

Navigation