Log in

Occupational exposure to respirable and diesel particulate matter at a highway toll station in India

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Pollutant emissions at toll stations are expected to be different than at a normal free flowing traffic environment because of stop and go movement of the vehicles at toll stations. This study therefore aimed at investigating the personal exposure of workers at a toll station on a busy national highway. Results showed that toll workers inside the toll collection cabins were exposed to higher DPM (Diesel particulate matter) concentrations (79.6 ± 27.24 µg m−3) than kerbside workers (73.52 ± 40.9 µg m−3). The in-cabin and kerbside PM2.5 (particles with aerodynamic diameter ≤ 2.5 µm) concentrations were 86.1 ± 45.4 µg m−3 and 79.20 ± 48 µg m−3, respectively. For PM10 (particles with aerodynamic diameter ≤ 10 µm) it was 169.56 ± 58.83 µg m−3 in-cabin and 156.41 ± 80.72 µg m−3 at the kerbside. DPM and PM (PM2.5 and PM10) evening concentrations were ~ 2 times higher than the morning concentrations, primarily due to increased traffic and lesser atmospheric dispersion of pollutants. Stepwise regression models showed that temperature, relative humidity and wind speed significantly influenced the DPM and PM concentration. The General Linear Model analysis showed that the predictors could explain 53% (DPM concentrations), 71% (PM2.5 concentration) and 55% (PM10 concentration) variability. Worker’s respiratory deposition dose of pollutants was higher (~ 2–3 times) inside the toll cabin than at kerbside; higher in the evening (~ 2 times) than morning and higher (~ 1.5 times) on weekdays than on weekends. The present study demonstrates the need to focus on different policies to control the pollution concentration in workplaces, especially at places having proximity to traffic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhijith KV, Kumar P (2021) Evaluation of respiratory deposition doses in the presence of green infrastructure. Air Qual Atmos Health 14(6):911–924

    Article  CAS  Google Scholar 

  • Askariyeh MH, Zietsman J, Autenrieth R (2020) Traffic contribution to PM2.5 increment in the near-road environment. Atmos Environ 224:117113

    Article  CAS  Google Scholar 

  • Azarmi F, Kumar P (2016) Ambient exposure to coarse and fine particle emissions from building demolition. Atmos Environ 137:62–79

    Article  CAS  Google Scholar 

  • Baldauf R, Thoma E, Hays M, Shores R, Kinsey J, Gullett B, Kimbrough S, Isakov V, Long T, Snow R, Khlystov A, Bang J (2008) Traffic and meteorological impacts on near-road air quality: summary of methods and trends from the Raleigh near-road study. J Air Waste Manag Assoc 58(7):865–878

    Article  CAS  Google Scholar 

  • Betancourt RM, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, Contreras Y (2017) Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ 157:135–145

    Article  Google Scholar 

  • Buonanno G, Stabile L, Morawska L, Russi A (2013) Children exposure assessment to ultrafine particles and black carbon: the role of transport and cooking activities. Atmos Environ 79:53–58

    Article  CAS  Google Scholar 

  • Cantrell BK, Watts WF Jr (1997) Diesel exhaust aerosol: review of occupational exposure. Appl Occup Environ Hyg 12(12):1019–1027

    Article  CAS  Google Scholar 

  • Carslaw DC, Ropkins K (2012) Openair—an R package for air quality data analysis. Environ Model Softw 27:52–61

    Article  Google Scholar 

  • Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37(5):649–660

    Article  CAS  Google Scholar 

  • Chaney RA, Sloan CD, Cooper VC, Robinson DR, Hendrickson NR, McCord TA, Johnston JD (2017) Personal exposure to fine particulate air pollution while commuting: an examination of six transport modes on an urban arterial roadway. PLoS One 12(11):e0188053

    Article  Google Scholar 

  • Chen H, Goldberg MS, Burnett RT, Jerrett M, Wheeler AJ, Villeneuve PJ 2013 Long-term exposure to traffic-related air pollution and cardiovascular mortality. Epidemiol, 35–43

  • Cheng YH, Li YS (2010) Influences of traffic emissions and meteorological conditions on ambient PM10 and PM2.5 levels at a highway toll station. Aerosol Air Qual Res 10(5):456–462

    Article  CAS  Google Scholar 

  • Cheng YH, Yang LS (2016) Characteristics of ambient black carbon mass and size-resolved particle number concentrations during corn straw open-field burning episode observations at a rural site in southern Taiwan. Int J Environ Res Public Health 13(7):688

    Article  Google Scholar 

  • Commodore A, Wilson S, Muhammad O, Svendsen E, Pearce J (2017) Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes. Environ Monit Assess 189(8):1–30

    Article  Google Scholar 

  • CPCB 2009 National Ambient Air Quality Standards. Central Pollution Control Board, New Delhi, Notification dated 18 November 2009. https://cpcb.nic.in/uploads/National_Ambient_Air_Quality_Standards.pdf (Accessed on 09 September 2021)

  • Creata ML, Marinescu AM (2019) Directive (EU) 2019/790 of the European Parliament and of the Council of 17 April 2019 on copyright and related rights in the Digital Single Market and amending Directives 96/9/EC and 2001/29/EC. Rom J Intell Prop L 40

  • Croci E (2016) Urban road pricing: a comparative study on the experiences of London, Stockholm and Milan. Transp Res Proc 14:253–262

    Google Scholar 

  • Cui S, **an J, Shen F, Zhang L, Deng B, Zhang Y, Ge X (2021) One-year real-time measurement of black carbon in the rural area of Qingdao, Northeastern China: seasonal variations, meteorological effects, and the COVID-19 case analysis. Atmosphere 12(3):394

    Article  CAS  Google Scholar 

  • DGMS (2018). DGMS Circular DGMS (S&T)/Tech. Circular no 01 dated 13.08.2018. Directorate General of Mines Safety, India. https://www.dgms.net/Compilation%20of%20DGMS%20Circulars%20of%202018.pdf (Accessed on 12 May 2022)

  • DieselNet (2022a). Germany: occupational health regulations. https://dieselnet.com/standards/de/ohs.php (Accessed on 08 May 2022a)

  • DieselNet (2022b). Switzerland: occupational health regulations. https://dieselnet.com/standards/ch/ (Accessed on 08 May 2022b)

  • Dinoi A, Donateo A, Belosi F, Conte M, Contini D (2017) Comparison of atmospheric particle concentration measurements using different optical detectors: potentiality and limits for air quality applications. Measurement 106:274–282

    Article  Google Scholar 

  • Gaillard S, Sarver E, Cauda E (2019) A field study on the possible attachment of DPM and respirable dust in mining environments. J Sustain Min 18(2):100–108

    Article  Google Scholar 

  • Gao HO (2021) Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. Environ Pollut 268:115931

    Article  Google Scholar 

  • Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J et al (2005) Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 16(6):737–743

    Article  Google Scholar 

  • Gautam S, Prusty BK, Patra AK (2015) Dispersion of respirable particles from the workplace in opencast iron ore mines. Environ Technol Innov 4:137–149

    Article  Google Scholar 

  • Giang NTH, Oanh NTK (2014) Roadside levels and traffic emission rates of PM2.5 and BTEX in Ho Chi Minh City. Vietnam Atmos Environ 94:806–816

    Article  Google Scholar 

  • Grange SK, Carslaw DC (2019) Using meteorological normalisation to detect interventions in air quality time series. Sci Total Environ 653:578–588

    Article  CAS  Google Scholar 

  • Grimm (2010) Operational manual of portable laser aerosol spectrometer and dust monitor (Model 1.108/1.109). GRIMM Aerosol Technik GmbH & Co. KG, Ainring

  • Gupta AK, Karar K, Ayoob S, John K (2008) Spatio-temporal characteristics of gaseous and particulate pollutants in an urban region of Kolkata, India. Atmos Res 87(2):103–115

    Article  CAS  Google Scholar 

  • Gupta AK, Nag S, Mukhopadhyay UK (2006) Characterisation of PM 10, PM 2.5 and benzene soluble organic fraction of particulate matter in an urban area of Kolkata, India. Environ Monit Assess 115(1):205–222

    Article  CAS  Google Scholar 

  • Gupta SK, Elumalai SP (2019) Exposure to traffic-related particulate matter and deposition dose to auto rickshaw drivers in Dhanbad, India. Atmos Pollut Res 10(4):1128–1139

    Article  CAS  Google Scholar 

  • Gurjar BR 2021 Creating Innovative Solutions for a Sustainable Future. https://www.teriin.org/article/air-pollution-india-major-issues-and-challenges

  • HEI (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects (No. 17). Panel on the Health Effects of Traffic-Related Air Pollution. Health Effects Institute

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7(4):533–556

    Article  CAS  Google Scholar 

  • Heinrich U, Muhle H, Takenaka S, Ernst H, Fuhst R, Mohr U, Pott F, Stöber W (1986) Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Appl Toxicol 6(6):383–395

    Article  CAS  Google Scholar 

  • Hinds WC, Zhu Y (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons, Hoboken

    Google Scholar 

  • Houston D, Wu J, Ong P, Winer A (2004) Structural disparities of urban traffic in southern California: implications for vehicle-related air pollution exposure in minority and high-poverty neighborhoods. J Urban Aff 26(5):565–592

    Article  Google Scholar 

  • Iwai K, Adachi S, Takahashi M, Möller L, Udagawa T, Mizuno S, Sugawara I (2000) Early oxidative DNA damages and late development of lung cancer in diesel exhaust-exposed rats. Environ Res 84(3):255–264

    Article  CAS  Google Scholar 

  • Janssen NAH, Fischer P, Marra M, Ameling C, Cassee FR (2013) Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci Total Environ 463:20–26

    Article  Google Scholar 

  • Jeong CH, Wang JM, Hilker N, Debosz J, Sofowote U, Su Y, Noble M, Healy RM, Munoz T, Dabek-Zlotorzynska E, Celo V, Evans GJ (2019) Temporal and spatial variability of traffic-related PM2. 5 sources: comparison of exhaust and non-exhaust emissions. Atmos Environ 198:55–69

    Article  CAS  Google Scholar 

  • Jerrett M, Finkelstein MM, Brook JR, Arain MA, Kanaroglou P, Stieb DM, Gilbert NL, Verma D, Finkelstein N, Chapman KR, Sears MR (2009) A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada. Environ Health Perspect 117(5):772–777

    Article  CAS  Google Scholar 

  • Karar K, Gupta AK (2006) Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmos Res 81(1):36–53

    Article  CAS  Google Scholar 

  • Kaur S, Nieuwenhuijsen MJ (2009) Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment. Environ Sci Technol 43(13):4737–4743

    Article  CAS  Google Scholar 

  • Kaur S, Clark RDR, Walsh PT, Arnold SJ, Colvile RN, Nieuwenhuijsen MJ (2006) Exposure visualisation of ultrafine particle counts in a transport microenvironment. Atmos Environ 40(2):386–398

    Article  CAS  Google Scholar 

  • Keast L, Bramwell L, Maji KJ, Rankin J, Namdeo A (2022) Air quality outside schools in Newcastle upon Tyne, UK: an investigation into NO2 and PM concentrations and PM respiratory deposition. Atmosphere 13(2):172

    Article  CAS  Google Scholar 

  • Kendrick CM, Koonce P, George LA (2015) Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmos Environ 122:133–141

    Article  CAS  Google Scholar 

  • Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD (2013) Long-and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology 24(4):555

    Article  Google Scholar 

  • Kolhe AR, Aher GR, Ralegankar SD, Safai PD (2018) Investigation of aerosol black carbon over semi-urban and urban locations in south-western India. Atmos Pollut Res 9(6):1111–1130

    Article  CAS  Google Scholar 

  • Kolluru SSR, Patra AK (2020) Personal exposures to PM during short distance highway travel in India. Transp Res D Transp Environ 81:102315

    Article  Google Scholar 

  • Kolluru SSR, Patra AK, Sahu SP (2018) A comparison of personal exposure to air pollutants in different travel modes on national highways in India. Sci Total Environ 619:155–164

    Article  Google Scholar 

  • Kolluru SSR, Patra AK, Dubey RS (2019a) In-vehicle PM2.5 personal concentrations in winter during long distance road travel in India. Sci Total Environ 684:207–220

    Article  CAS  Google Scholar 

  • Kolluru SSR, Patra AK, Kumar P (2019) Determinants of commuter exposure to PM2.5 and CO during long-haul journeys on national highways in India. Atmos Pollut Res 10(4):1031–1041

    Article  CAS  Google Scholar 

  • Kondo Y, Komazaki Y, Miyazaki Y, Moteki N, Takegawa N, Kodama D, Deguchi S, Nogami M, Fukuda M, Miyakawa T, Morino Y (2006) Temporal variations of elemental carbon in Tokyo. J Geophys Res Atmos, 111(D12)

  • Krecl P, Johansson C, Targino AC, Ström J, Burman L (2017) Trends in black carbon and size-resolved particle number concentrations and vehicle emission factors under real-world conditions. Atmos Environ 165:155–168

    Article  CAS  Google Scholar 

  • Kumar P, Goel A (2016) Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections. Environ Sci Process Impacts 18(9):1220–1235

    Article  CAS  Google Scholar 

  • Laden F, Hart JE, Smith TJ, Davis ME, Garshick E (2007) Cause-specific mortality in the unionized US trucking industry. Environ Health Perspect 115(8):1192–1196

    Article  Google Scholar 

  • Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 108(10):941–947

    Article  CAS  Google Scholar 

  • Lai CH, Hsiao PK, Yang YT, Lin SM, Lung SCC (2021) Effects of the manual and electronic toll collection systems on the particulate pollutant levels on highways in Taiwan. Atmos Pollut Res 12(3):25–32

    Article  CAS  Google Scholar 

  • Lai CH, Liou SH, Shih TS, Tsai PJ, Chen HL, Chang YC, Buckley TJ, Strickland P, Jaakkola JJ (2004) Exposure to fine particulate matter (PM2.5) among highway toll station workers in Taipei: direct and indirect exposure assessment. Arch Environ Health Int J 59(3):138–148

    Article  Google Scholar 

  • Latha KM, Badarinath KVS (2003) Black carbon aerosols over tropical urban environment—a case study. Atmos Res 69(1–2):125–133

    Article  CAS  Google Scholar 

  • Latha KM, Badarinath KVS, Moorthy KK (2004) Impact of diesel vehicular emissions on ambient black carbon concentration at an urban location in India. Curr Sci 86(3):451–453

    CAS  Google Scholar 

  • Li PH, Yu J, Bi CL, Yue JJ, Li QQ, Wang L, Liu J, **ao Z, Guo L, Huang BJ (2019) Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals. Atmos Pollut Res 10(4):1024–1030

    Article  CAS  Google Scholar 

  • Lim S, Barratt B, Holliday L, Griffiths C, Mudway I (2020) The Driver Diesel Exposure Mitigation Study (DEMiSt)

  • Lin W, Huang W, Zhu T, Hu M, Brunekreef B, Zhang Y, Liu X, Cheng H, Gehring U, Li C, Tang X (2011) Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Bei**g Olympics. Environ Health Perspect 119(10):1507–1512

    Article  CAS  Google Scholar 

  • Loschiavo L (2013) Diesel particulate matter & Occupational health issues; Position paper. Australia: Australian Institute of Occupational Hygienists

  • Lucking AJ, Lundbäck M, Barath SL, Mills NL, Sidhu MK, Langrish JP, Boon NA, Pourazar J, Badimon JJ, Gerlofs-Nijland ME, Cassee FR (2011) Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123(16):1721–1728

    Article  CAS  Google Scholar 

  • Luo ZG, Wang ZY, Wang HW, Peng ZR (2021) Characterizing spatiotemporal distributions of black carbon and PM2.5 at a toll station: observations on manual and electronic toll collection lanes. Build Environ 199:107933

    Article  Google Scholar 

  • Lv H, Li H, Qiu Z, Zhang F, Song J (2021) Assessment of pedestrian exposure and deposition of PM10, PM2.5 and ultrafine particles at an urban roadside: a case study of **’an, China. Atmos Pollut Res 12(4):112–121

    Article  CAS  Google Scholar 

  • Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, Pereira MC, Teixeira JP, Costa C (2020) Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci Total Environ 717:137293

    Article  CAS  Google Scholar 

  • Manojkumar N, Monishraj M, Srimuruganandam B (2021) Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India. Atmos Pollut Res 12(1):219–230

    Article  CAS  Google Scholar 

  • Maynard D, Coull BA, Gryparis A, Schwartz J (2007) Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect 115(5):751–755

    Article  CAS  Google Scholar 

  • McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, Künzli N, Gauderman J, Avol ED, Thomas D, Peters J (2006) Traffic, susceptibility, and childhood asthma. Environ Health Perspect 114(5):766–772

    Article  CAS  Google Scholar 

  • McLaughlin RP, Parks DA, Grubb AI, Mason GS, Miller AL (2020) A predictive model for elemental carbon, organic carbon and total carbon based on laser induced breakdown spectroscopy measurements of filter-collected diesel particulate matter. Spectrochim Acta B At Spectrosc 168:10–1016

    Article  Google Scholar 

  • Merico E, Donateo A, Gambaro A, Cesari D, Gregoris E, Barbaro E, Dinoi A, Giovanelli G, Masieri S, Contini D (2016) Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmos Environ 139:1–10

    Article  CAS  Google Scholar 

  • Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356(5):447–458

    Article  CAS  Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32(4):450–455

    Article  CAS  Google Scholar 

  • MSHA. 30 CFR 57, 2006. Diesel particulate matter exposure of underground metal & non metal miners. Federal Register, 28924–9012

  • Nazif A, Mohammed NI, Malakahmad A, Abualqumboz MS (2016) Application of step-wise regression analysis in predicting future particulate matter concentration episode. Water Air Soil Pollut 227(4):117

    Article  Google Scholar 

  • Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL (1995) Comparative pulmonary toxicities and carcinogenicity of chronically inhaled diesel exhaust and carbon black in f344 rats. Toxicol Sci 25(1):80–94

    Article  CAS  Google Scholar 

  • NIOSH 1988 Current Intelligence Bulletin No. 50: Carcinogenic Effects of Exposure to Diesel Exhaust, DHHS (NIOSH) Publication No. 88–116, National Institute for Occupational Safety and Health, Cincinnati, OH

  • Niza S, Jamal HH (2007) Carbon monoxide exposure assessment among toll operators in Klang Valley, Kuala Lumpur, Malaysia. Int J Environ Health Res 17(2):95–103

    Article  CAS  Google Scholar 

  • Ogur EO, Kariuki SM (2014) Effect of car emissions on human health and the environment. Int J Appl Eng Res 9(21):11121–11128

    Google Scholar 

  • OSHA,2013.https://elcosh.org/document/3637/d001191/OSHAMSHA+Hazard+Alert%253A+Diesel+ExhaustDiesel+Particulate+Matter.html

  • Pakkanen TA, Kerminen VM, Ojanen CH, Hillamo RE, Aarnio P, Koskentalo T (2000) Atmospheric black carbon in Helsinki. Atmos Environ 34(9):1497–1506

    Article  CAS  Google Scholar 

  • Pani SK, Wang SH, Lin NH, Chantara S, Lee CT, Thepnuan D (2020) Black carbon over an urban atmosphere in northern peninsular Southeast Asia: characteristics, source apportionment, and associated health risks. Environ Pollut 259:113871

    Article  CAS  Google Scholar 

  • Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Kc D, Prakash S, Ross JM, Levy D, Kinney PL (2010) Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Perspect 118(9):1338–1343

    Article  Google Scholar 

  • Pattinson W, Longley I, Kingham S (2014) Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmos Environ 94:782–792

    Article  CAS  Google Scholar 

  • Pérez N, Pey J, Cusack M, Reche C, Querol X, Alastuey A, Viana M (2010) Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Sci Technol 44(7):487–499

    Article  Google Scholar 

  • Pope CA III, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120(11):941–948

    Article  CAS  Google Scholar 

  • Prasad P, Raman MR, Ratnam MV, Chen WN, Rao SVB, Gogoi MM, Kompalli SK, Kumar KS, Babu SS (2018) Characterization of atmospheric Black Carbon over a semi-urban site of Southeast India: local sources and long-range transport. Atmos Res 213:411–421

    Article  CAS  Google Scholar 

  • Rupakheti D, Adhikary B, Praveen PS, Rupakheti M, Kang S, Mahata KS, Naja M, Zhang Q, Panday AK, Lawrence MG (2017) Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmos Chem Phys 17(18):11041–11063

    Article  CAS  Google Scholar 

  • SAAQIS, 2009. http://www.saaqis.org.za/Downloads.aspx?type=AQ (Accessed on December 24, 2022)

  • Sahu SP, Patra AK (2021) Assessment of dispersion of respirable particles emitted from opencast mining operations: development and validation of stepwise regression models. Environ Dev Sustain, 1–26

  • Sahu SP, Patra AK, Kolluru SSR (2018) Spatial and temporal variation of respirable particles around a surface coal mine in India. Atmos Pollut Res 9(4):662–679

    Article  CAS  Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KVS (2010) Influence of vehicular traffic on urban air quality–A case study of Hyderabad, India. Transp Res D Transp Environ 15(3):154–159

    Article  Google Scholar 

  • Silverman DT, Samanic CM, Lubin JH, Blair AE, Stewart PA, Vermeulen R, Coble JB, Rothman N, Schleiff PL, Travis WD, Ziegler RG (2012) The diesel exhaust in miners study: a nested case–control study of lung cancer and diesel exhaust. J Natl Cancer Inst 104(11):855–868

    Article  CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SMS (2010) Analysis and interpretation of particulate matter–PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos Pollut Res 1(3):184–194

    Article  Google Scholar 

  • Stinn W, Teredesai A, Anskeit E, Rustemeier K, Schepers G, Schnell P, Haussmann HJ, Carchman RA, Coggins CR, Reininghaus W (2005) Chronic nose-only inhalation study in rats, comparing room-aged sidestream cigarette smoke and diesel engine exhaust. Inhal Toxicol 17(11):549–576

    Article  CAS  Google Scholar 

  • Thomas S, Jacko RB (2007) Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models. Air Waste Manag Assoc 57(4):480–488

    Article  CAS  Google Scholar 

  • TSI 2022 https://tsi.com/products/aerosol-and-dust-monitors/aerosol-and-dustmonitors/sidepak%E2%84%A2-am520-personal-aerosol-monitor/

  • Turner S 2007 Diesel particulate exposure and control in Western Australia underground mines

  • US EPA, 2013 US EPA, 2013. https://www.epa.gov/criteria-air-pollutants/naaqs-table (Accessed on December 24, 2022)

  • Varaden D, McKevitt C, Barratt B (2018) Making the invisible visible: engaging school children in monitoring air pollution in London. Res 2(2):267–288

    Google Scholar 

  • Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K (2014) Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122(2):172–177

    Article  Google Scholar 

  • Wåhlin P, Berkowicz R, Palmgren F (2006) Characterisation of traffic-generated particulate matter in Copenhagen. Atmos Environ 40(12):2151–2159

    Article  Google Scholar 

  • Wang Z, Zhong S, Peng ZR, Cai M (2018) Fine-scale variations in PM2.5 and black carbon concentrations and corresponding influential factors at an urban road intersection. Build Environ 141:215–225

    Article  Google Scholar 

  • Weber S, Kuttler W, Weber K (2006) Flow characteristics and particle mass and number concentration variability within a busy urban street canyon. Atmos Environ 40(39):7565–7578

    Article  CAS  Google Scholar 

  • Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, Schlaug G, Gold DR, Mittleman MA (2012) Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med 172(3):229–234

    Article  Google Scholar 

  • World Health Organization (2021) WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329

  • Wu DL, Lin M, Chan CY, Li WZ, Tao J, Li YP, Sang XF, Bu CW (2013) Influences of commuting mode, air conditioning mode and meteorological parameters on fine particle (PM2.5) exposure levels in traffic microenvironments. Aerosol Air Qual Res 13(2):709–720

    Article  Google Scholar 

  • Zhang D, Zhou C, He BJ (2022) Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim 45:101268

    Article  Google Scholar 

  • Zhang D, Zhou C, Sun D, Qian Y (2022b) The influence of the spatial pattern of urban road networks on the quality of business environments: the case of Dalian City. Environ Dev Sustain 24(7):9429–9446

    Article  Google Scholar 

  • Zhang K, Batterman S (2010) Near-road air pollutant concentrations of CO and PM2.5: a comparison of MOBILE6.2/CALINE4 and generalized additive models. Atmos Environ 44(14):1740–1748

    Article  CAS  Google Scholar 

  • Zhang L, Guo C, Jia X, Xu H, Pan M, Xu D, Shen X, Zhang J, Tan J, Qian H, Dong C, Wu C (2018) Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS One 13(4):e0193586

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Patra.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Editorial responsibility: U.W. Tang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2048 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazneen, Patra, A.K., Kolluru, S.S.R. et al. Occupational exposure to respirable and diesel particulate matter at a highway toll station in India. Int. J. Environ. Sci. Technol. 21, 341–358 (2024). https://doi.org/10.1007/s13762-023-04853-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04853-5

Keywords

Navigation