Log in

Microbiome-mediated nano-bioremediation of heavy metals: a prospective approach of soil metal detoxification

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Heavy metal pollution has increased alarmingly due largely to industrialization, intensive agricultural practices and other anthropogenic activities. Soil heavy metal contamination is the serious threat to the food security worldwide. Due to non-degradative nature, metals persist for a longer period of time in the environment, can be toxic to human health and environments. Acknowledging the toxicity threat, various physical, chemical and biological detoxification strategies such as soil stabilization, soil excavation, soil washing, thermal desorption, chemical extraction and phytoremediation, have been employed in laboratory and under field conditions to treat metal contamination. Such techniques have not completely been successful due to cost, technical complexity, generation of secondary pollutants and conflicting results. Nanotechnology, a rapidly evolving field, has recently been used to remediate hazardous metals. Nanoparticles due to their unique chemical and physical properties are considered important in toxicity alleviation from contaminated environment. The integrated nanoparticles-bioremediation strategies called nano-bioremediation is other promising option that stimulate microbiome functions to remove harmful contaminants from the polluted area. The reported metal removal efficiency of nanobioremediation varies between 12% with biogenic palladium nanoparticle prepared from Spirulina platensis to 100% with iron oxide nanoparticle of Geobacter sulforeducens for palladium and chromium, respectively. This review provides the recent information available in literature about the role of nanotechnology in the metal amelioration from contaminated soils. Understanding the mechanistic interactions between soil microbiome, nanoparticles and contaminants is of paramount importance to explore the microbes-based nanoremediation strategies in the inexpensive abatement of metal enriched environment vis-à-vis crop optimization in contaminated fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd FG, Mohsen LY, Al Shalah LA, Alkaim AF (2018) Silver nanoparticles synthesized by using Pseudomonas aeruginosa synergistically act with antibiotic. Asian J Microbiol Biotechnol Environ Sci 20:50–52

    Google Scholar 

  • Abedi T, Mojiri A (2020) Cadmium uptake by wheat (Triticum aestivum L: an overview. Plants 9(4):500

    Article  CAS  Google Scholar 

  • Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 1(21):e00305. https://doi.org/10.1016/j.btre.2019.e00305

    Article  Google Scholar 

  • Abril M, Ruiz H, Cumbal LH (2018) Biosynthesis of multicomponent nanoparticles with extract of mortiño (Vaccinium floribundumKunth) berry: application on heavy metals removal from water and immobilization in soils. J Nanotechnol 2018:1–10

    Article  Google Scholar 

  • Adam V, Chudobova D, Tmejova K, Cihalova K, Krizkova S, Guran R, Kominkova M, Zurek M, Kremplova M, Jimenez AMJ, Konecna M, Hynek D, Pekarik V, Kizek R (2014) An Effect of cadmium and lead ions on Escherichia coli with the Cloned gene for metallothionein (MT-3) revealed by electrochemistry. Electrochim Acta 140:11–19

    Article  CAS  Google Scholar 

  • Adrees M, Khan ZS, Ali S, Hafeez M, Khalid S, Rehmanur MZ, Hussain A, Hussain K, Chatha SA, Rizwan M (2020) Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere 1(238):124681. https://doi.org/10.1016/j.chemosphere.2019.124681

    Article  CAS  Google Scholar 

  • Afandi Y, Tejowulan RS, Baiq DK (2019) Mercury uptake by Zea mays L. grown on an inceptisol polluted by amalgamation and cyanidation tailings of small-scale gold mining. J Degrad Min Lands Manag 6(3):1821

    Article  Google Scholar 

  • Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Hashem A, Al-Arjani AB, Alqarawi AA, AbdAllah EF (2021) Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol Environ Saf 1(209):111829. https://doi.org/10.1016/j.ecoenv.2020.111829

    Article  CAS  Google Scholar 

  • Ajmal AW, Saroosh S, Mulk S, Hassan MN, Yasmin H, Jabeen Z, Nosheen A, Shah SM, Naz R, Hasnain Z, Qureshi TM (2021) Bacteria isolated from wastewater irrigated agricultural soils adapt to heavy metal toxicity while maintaining their plant growth promoting traits. Sustainability 13(14):7792. https://doi.org/10.3390/su13147792

    Article  CAS  Google Scholar 

  • Alexakis D (2016) Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site. Arch Agron Soil Sci 62(3):359–373. https://doi.org/10.1080/03650340.2015.1062088

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Illahi I (2019) Environmtal chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Al-Qahtani KM (2017) Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egypt J Aquat Res 43(4):269–274

    Article  Google Scholar 

  • Alsabhan AH, Perveen K, Alwadi AS (2022) Heavy metal content and microbial population in the soil of Riyadh Region, Saudi Arabia. J King Saud Univ-Sci 34(1):101671. https://doi.org/10.1016/j.jksus.2021.101671

    Article  Google Scholar 

  • Alsamhary KI (2020) Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J Biol Sci 27(8):2185–91. https://doi.org/10.1016/j.sjbs.2020.04.026

    Article  CAS  Google Scholar 

  • Alsharari SF, Tayel AA, Moussa SH (2018) Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int J Biol Macromol 15(118):2265–2268. https://doi.org/10.1016/j.ijbiomac.2018.07.103

    Article  CAS  Google Scholar 

  • Al-Senani GM, Al-Kadhi N (2020) The synthesis and effect of silver nanoparticles on the adsorption of Cu2+ from aqueous solutions. Appl Sci 10:4840

    Article  CAS  Google Scholar 

  • Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S (2021) A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol Environ Saf 15(213):112027. https://doi.org/10.1016/j.ecoenv.2021.112027

    Article  CAS  Google Scholar 

  • Amjad M, Raza H, Murtaza B, Abbas G, Imran M, Shahid M, Naeem MA, Zakir A, Iqbal MM (2019) Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants 9(1):5. https://doi.org/10.3390/plants9010005

    Article  CAS  Google Scholar 

  • Anandaradje A, Meyappan V, Kumar I, Sakthivel N (2020). Microbial synthesis of silver nanoparticles and their biological potential. In: Nanoparticles in medicine (pp. 99–133). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-8954-2_4

  • Anjum S, Gupta A, Sharma D, Gautam D, Bhan S, Sharma A, Kapil A, Gupta B (2016) Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater Sci Eng, C 64:157–166. https://doi.org/10.1016/j.msec.2016.03.069

    Article  CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 21(4):69. https://doi.org/10.3389/fenvs.2016.00069

    Article  Google Scholar 

  • Arsiya F, Sayadi M, Sobhani S (2017) Arsenic (III) adsorption using palladium nanoparticles from aqueous solution. J Water Environ Nanotechnol 2:166–173

    CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manag 5(3):56–66

    Google Scholar 

  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA (2021) Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci 4(11):2248. https://doi.org/10.3389/fpls.2020.587785

    Article  Google Scholar 

  • Babaee Y, Mulligan CN, Rahaman MS (2018) Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. J Chem Technol & Biotechnol 93(1):63–71

    Article  CAS  Google Scholar 

  • Bahar O, Mordukhovich G, Luu DD, Schwessinger B, Daudi A, Jehle AK, Felix G, Ronald PC (2016) Bacterial outer membrane vesicles induce plant immune responses. Mol Plant Microbe Interact 29(5):374–384. https://doi.org/10.1094/MPMI-12-15-0270-R

    Article  CAS  Google Scholar 

  • Ballesteros S, Rincon JM, Rincon-Mora B, Jordan MM (2017) Vitrification of urban soil contamination by hexavalent chromium. J Geochem Explor 174:132–139

    Article  CAS  Google Scholar 

  • Baragaño D, Forján R, Welte L, Gallego JL (2020) Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Sci Rep 5 10(1):1–10. https://doi.org/10.1038/s41598-020-58852-4

    Article  CAS  Google Scholar 

  • Barra Caracciolo A, Terenzi V (2021) Rhizosphere microbial communities and heavy metals. Microorganisms 9(7):1462. https://doi.org/10.3390/microorganisms9071462

    Article  CAS  Google Scholar 

  • Baruah N, Mondal SC, Farooq M, Gogoi N (2019) Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water Air Soil Pollut 230(12):1–5. https://doi.org/10.1007/s11270-019-4329-0

    Article  CAS  Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127(1):73–82

    Article  CAS  Google Scholar 

  • Beyki MH, Ghasemi MH, Jamali A, Shemirani F (2017) A novel polylysine–resorcinol base γ-alumina nanotube hybrid material for effective adsorption/preconcentration of cadmium from various matrices. J Ind Eng Chem 25(46):165–174. https://doi.org/10.1016/j.jiec.2016.10.027

    Article  CAS  Google Scholar 

  • Bhargavi RJ, Maheshwari U, Gupta S (2015) Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn (II) and CBG dye from wastewater. Int J Ind Chem 6(1):31–41. https://doi.org/10.1007/s40090-014-0029-1

    Article  CAS  Google Scholar 

  • Bhati R, Sreedharan SM, Rizvi A, Khan MS, Singh R (2022) An insight into efflux-mediated arsenic resistance and biotransformation potential of Enterobacter cloacae RSC3from arsenic polluted area. Indian J Microbiol. https://doi.org/10.1007/s12088-022-01028-7

    Article  Google Scholar 

  • Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S (2021) Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J Hazard Mater 9:128033. https://doi.org/10.1016/j.jhazmat.2021.128033

    Article  CAS  Google Scholar 

  • Bilal M, Ihsanullah I, Younas M, Shah MU (2021) Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep Purif Technol 1(278):119510

    Article  Google Scholar 

  • Boente C, Sierra C, Rodrìguez-Valdés E, Menéndez-Aguado JM, Gallego JR (2017) Soil washing optimization by means of attributive analysis: case study for the removal of potentially toxic elements from soil contaminated with pyrite ash. J Clean Prod 142:2693–2699

    Article  CAS  Google Scholar 

  • Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  • Bystrzejewski M, Pyrzyńska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47(4):1201–1204

    Article  CAS  Google Scholar 

  • Camas M, Celik F, Sazak Camas A, Ozalp HB (2019) Biosynthesis of gold nanoparticles using marine bacteria and Box-Behnken design optimization. Part Sci Technol 37(1):31–38. https://doi.org/10.1080/02726351.2017.1287794

    Article  CAS  Google Scholar 

  • Canadian Ministry of the Environment (CME) (2009). Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act.

  • Çatav ŞS, Genç TO, Oktay MK, Küçükakyüz K (2020) Cadmium toxicity in wheat: impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bull Environ Contam Toxicol 104(1):71–77. https://doi.org/10.1007/s00128-019-02745-4

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  CAS  Google Scholar 

  • Chen W, Li H (2018) Cost-effectiveness analysis for soil heavy metal contamination treatments. Water Air Soil Pollut 229:1–13

    Article  Google Scholar 

  • Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci & Technol 44(19):7635–7640. https://doi.org/10.1021/es101559r

    Article  CAS  Google Scholar 

  • Chiou WY, Hsu FC (2019) Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability 11(22):6215. https://doi.org/10.3390/su11226215

    Article  CAS  Google Scholar 

  • Chu D (2018). Effects of heavy metals on soil microbial community. InIOP Conference Series: Earth and environmental science 113(1):012009. IOP Publishing.

  • Chugh D, Viswamalya VS, Das B (2021) Green synthesis of silver nanoparticles with algae and the importance of cap** agents in the process. J Genet Eng Biotechnol 19(1):1–21. https://doi.org/10.1186/s43141-021-00228-w

    Article  Google Scholar 

  • Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Buttino I (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244

    Article  CAS  Google Scholar 

  • Costa LH, Hemmer JV, Wanderlind EH, Gerlach OM, Santos AL, Tamanaha MS, Bella-Cruz A, Corrêa R, Bazani HA, Radetski CM, Almerindo GI (2020) Green synthesis of gold nanoparticles obtained from algae Sargassum cymosum: optimization, characterization and stability. BioNanoScience 10(4):1049–1062

    Article  Google Scholar 

  • Cumbal L, SenGupta AK (2005) Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci & Technol 39(17):6508–6515. https://doi.org/10.1021/es050175e

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397

    Article  CAS  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol. https://doi.org/10.1155/2014/398569

    Article  Google Scholar 

  • Deepa K, Panda T (2020) Biogenic gold nanoparticles from Fusarium oxysporum: the impact of fungal morphology and localization studies. J Clust Sci 31(6):1185–1197. https://doi.org/10.1007/s10876-019-01725-2

    Article  CAS  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology 156:2630–2640

    Article  CAS  Google Scholar 

  • dos ValentimSantos J, Varón-López M, Fonsêca Sousa Soares CR, Lopes Leal P, Siqueira JO, de Souza Moreira FM (2016) Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res 23:6735–6748

    Article  Google Scholar 

  • Du Y, Zhang D, Zhou D, Liu L, Wu J, Chen H, ** D, Yan M (2021) The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil–plant system. AMB Express 11(1):1–3. https://doi.org/10.1186/s13568-021-01264-y

    Article  CAS  Google Scholar 

  • Duan C, Liu Y, Zhang H, Chen G, Song J (2020) Cadmium pollution impact on the bacterial community of haplic cambisols in Northeast China and inference of resistant genera. J Soil Sci Plant Nutr 20(3):1156–1170. https://doi.org/10.1007/s42729-020-00201-5

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 12(6):857–863

    Article  Google Scholar 

  • Elia P, Zach R, Hazan S, Kolusheva S, Porat ZE, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed 9:4007

    Google Scholar 

  • El-Sheekh MM, El-Kassas HY, Shams El-Din NG, Eissa DI, El-Sherbiny BA (2021) Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. Int J Phytoremed 23(14):153852. https://doi.org/10.1080/15226514.2021.1915957

    Article  CAS  Google Scholar 

  • Environment Protection Authority of Australia (2012). Classification and management of contaminated soil for disposal. Information Bulletin 105. Hobart, TAS 7001 Australia.

  • Environmental Protection Ministry of China (EPMC) (2015). Standards of soil environmental quality of agricultural land. Huangbanhang 69: Office of Environmental Protection Ministry of China, Bei**g, China.

  • Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.

  • Epelde L, Burges A, Mijangos I, Garbisu C (2014) Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Appl Soil Ecol 75:1–12

    Article  Google Scholar 

  • Etemadi M, Samadi S, Yazd SS, Jafari P, Yousefi N, Aliabadi M (2017) Selective adsorption of Cr (VI) ions from aqueous solutions using Cr6+-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent. Int J Biol Macromol 95:725–733

    Article  CAS  Google Scholar 

  • Eteng EU, Asawalam DO, Ano AO (2014) Effect of Cu and Zn on maize (Zea mays L) yield and nutrient uptake in coastal plain sand derived soils of southeastern Nigeria. Open J Soil Sci 4:235–245

  • Fathollahi A, Khasteganan N, Coupe SJ, Newman AP (2021) A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere 268:129290. https://doi.org/10.1016/j.chemosphere.2020.129290

    Article  CAS  Google Scholar 

  • Fato FP, Li DW, Zhao LJ, Qiu K, Long YT (2019) Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega 4(4):7543–7549

    Article  CAS  Google Scholar 

  • Feng L, Yan H, Dai C, Xu W, Gu F, Zhang F, Li T, **an J, He X, Yu Y, Ma M (2020) The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. Sci Total Environ 729:138972

    Article  CAS  Google Scholar 

  • Feng J, Shen RF, Shao JF (2021) Transport of cadmium from soil to grain in cereal crops: a review. Pedosphere 31(1):3–10

    Article  Google Scholar 

  • Galal A, Zaki MM, Atta NF, Samaha SH, Nasr HE, Attia NF (2021) Electroremoval of copper ions from aqueous solutions using chemically synthesized polypyrrole on polyester fabrics. J Water Process Eng 43:102287

    Article  Google Scholar 

  • Ganie AS, Bano S, Khan N, Sultana S, Rehman Z, Rahman MM, Sabir S, Coulon F, Khan MZ (2021) Nanoremediation technologies for sustainable remediation of contaminated environments: recent advances and challenges. Chemosphere 275:130065

    Article  CAS  Google Scholar 

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, Avellan A, Duarte RM, Duarte A, Casman EA, Lowry GV (2019) Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environ Sci & Technol 53(9):4959–4967

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77(3):229–236

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321. https://doi.org/10.1007/s10311-011-0313-7

    Article  CAS  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16(3):1807–1828

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Diez-Pascual S, González A, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC (2016) A nanoremediation strategy for the recovery of an as-polluted soil. Chemosphere 149:137–145

    Article  Google Scholar 

  • Girdhar M, Tabassum Z, Singh K, Mohan A (2022) A Review on the resistance and accumulation of heavy metals by different microbial strains. Biodegrad Technol Org Inorg Pollut 7:219

    Google Scholar 

  • Gjorgieva D, Kadifkova Panovska T, Ruskovska T, Bačeva K, Stafilov T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. Biomed Res Int. https://doi.org/10.1155/2013/276417

    Article  Google Scholar 

  • Gomez-Bolivar J, Mikheenko IP, Macaskie LE, Merroun ML (2019) Characterization of palladium nanoparticles produced by healthy and microwave-injured cells of Desulfovibrio desulfuricans and Escherichia coli. Nanomaterials 9(6):857

    Article  CAS  Google Scholar 

  • Gong Y, Zhao D, Wang Q (2018a) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460

    Article  CAS  Google Scholar 

  • Gong Y, Zhao D, Wang Q (2018b) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 15(147):440–460

    Article  Google Scholar 

  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf, A 374(1–3):1–8. https://doi.org/10.1016/j.colsurfa.2010.10.015

    Article  CAS  Google Scholar 

  • Goyal D, Yadav A, Prasad M, Singh TB, Shrivastav P, Ali A, Dantu PK, Mishra S (2020).Effect of heavy metals on plant growth: an overview. Contaminants in agriculture 79–101.

  • Grün AL, Manz W, Kohl YL, Meier F, Straskraba S, Jost C, Drexel R, Emmerling C (2019) Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur 31(1):1–22

    Article  Google Scholar 

  • Guilger-Casagrande M, Lima RD (2019) Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 22(7):287. https://doi.org/10.3389/fbioe.2019.00287

    Article  Google Scholar 

  • Guo H, Luo S, Chen L, **ao X, ** Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605

    Article  CAS  Google Scholar 

  • Gupta AD, Karthikeyan S (2016) Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principle component analysis. Ecotoxicol Environ Saf 130:289–294

    Article  CAS  Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  Google Scholar 

  • Hananingtyas I, Nuryanty CD, Karlinasari L, Alikodra HS, Jayanegara A, Sumantri A (2022). The effects of heavy metal exposure in agriculture soil on chlorophyll content of agriculture crops: A meta-analysis approach. InIOP Conference Series: Earth Environ Sci. (Vol. 951, No. 1, p. 012044). IOP Publishing.

  • Harikrishnan H, Shine K, Ponmurugan K, Moorthy IG, Kumar RS (2014) In vitro eco-friendly synthesis of cadmium sulfide nanoparticles using heterotrophic Bacillus cereus. J Optoelectron Biomed Mater 6(1):1–7

    Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    Article  CAS  Google Scholar 

  • Hemeir A, Masmoudi A, Reguieg Yssaad HA (2019). Phytotoxicity of copper and zinc in tomato plants (Lycopersicon Esculentum. Mill): impact on growth and mineral nutrition. InEuro-Mediterranean Conference for Environmental Integration (pp. 559–565). Springer, Cham.

  • Hemlata PR, Singh AP, Tejavath KK (2020) Biosynthesis of silver nanoparticles using cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5(10):5520. https://doi.org/10.1021/acsomega.0c00155

    Article  CAS  Google Scholar 

  • Houri T, Khairallah Y, Al Zahab A, Osta B, Romanos D, Haddad G (2020) Heavy metals accumulation effects on the photosynthetic performance of geophytes in Mediterranean reserve. J King Saud Univ-Sci 32(1):874–880. https://doi.org/10.1016/j.jksus.2019.04.005

    Article  Google Scholar 

  • Hu X, Wang J, Lv Y, Liu X, Zhong J, Cui X, Zhang M, Ma D, Yan X, Zhu X (2021a) Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Front Microbiol. https://doi.org/10.3389/fmicb.2021.707786

    Article  Google Scholar 

  • Hu X, Huang X, Zhao H, Liu F, Wang L, Zhao X, Gao P, Li X, Ji P (2021b) Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils. J Clean Prod 284:124713

    Article  CAS  Google Scholar 

  • Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A (2021) Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci Rep 11(1):1–8. https://doi.org/10.1038/s41598-020-80805-0

    Article  CAS  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. https://doi.org/10.1155/2018/2568038

    Article  Google Scholar 

  • Islam MN, Taki G, Nguye XP, Jo YT, Kim J, Park JH (2017) Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environ Sci Pollut Res 24:7177–7183

    Article  CAS  Google Scholar 

  • Jaafer R, Al-Sulami A, Al-Taee A (2019) The biosorption ability of Shewanella oneidensis for cadmium and lead isolated from soil in Basra Governorate. Iraq Pollut Res 38:267–270

    Google Scholar 

  • Jacob JM, Ravindran R, Narayanan M, Samuel SM, Pugazhendhi A, Kumar G (2021) Microalgae: a prospective low cost green alternative for nanoparticle synthesis. Curr Opin Environ Sci Health 20:100163. https://doi.org/10.1016/j.coesh.2019.12.005

    Article  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Article  Google Scholar 

  • Jang MH, Lim M, Hwang YS (2014) Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:1–9

  • Jayavarthanan R, Nanda A (2015) Antibiogram of silver nanoparticles synthesized from Rhizobium species. Der Pharm Lett 7(6):202–207

    Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  Google Scholar 

  • Kahraman H (2020) Heavy metals and bacteria example of P aeruginosa. Biomed J Sci Tech Res 29(3):22444–22446. https://doi.org/10.26717/BJSTR.2020.29.004801

    Article  Google Scholar 

  • Kalaivanan D, Ganeshamurthy AN (2016). Mechanisms of heavy metal toxicity in plants. InAbiotic stress physiology of horticultural crops (pp. 85–102). Springer, New Delhi.

  • Kamarudin KS, Mohamad MF (2010) Synthesis of gold (Au) nanoparticles for mercury adsorption. Am J Appl Sci 7(6):835

    Article  CAS  Google Scholar 

  • Kaur S, Roy A (2021) Bioremediation of heavy metals from wastewater using nanomaterials. Environ Dev Sustain 23(7):9617–9640

    Article  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2016) A comparison of technologies for remediation of heavy metal contaminated soils 1378. J Geochem Explor 182:247–268

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SM, Rasheed M (2009a) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009b) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Kim BK, Park GY, Jeon EK, Jung JM, Jung HB, Ko SH, Baek K (2013) Field application of in situ electrokinetic remediation for As-, Cu-, Pb-contaminated paddy soil. Water Air Soil Pollut 224:1698

    Article  Google Scholar 

  • Kim H, Cho K, Purev O, Choi N, Lee J (2022) Remediation of toxic heavy metal contaminated soil by combining a washing ejector based on hydrodynamic cavitation and soil washing process. Int J Environ Res Public Health 19:786. https://doi.org/10.3390/ijerph19020786

    Article  CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480. https://doi.org/10.1021/es903744f

    Article  CAS  Google Scholar 

  • Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60. https://doi.org/10.1016/j.scitotenv.2014.10.108

    Article  CAS  Google Scholar 

  • Krishnan S, Patel PN, Balasubramanian KK, Chadha A (2021) Yeast supported gold nanoparticles: an efficient catalyst for the synthesis of commercially important aryl amines. New J Chem 45(4):1915–1923

    Article  CAS  Google Scholar 

  • Kumar H, Sinha SK, Goud VV, Das S (2019a) Removal of Cr (VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01. J Environ Health Sci Engineer 17(2):1001–1016. https://doi.org/10.1007/s40201-019-00415-5

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GP, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462

    Article  CAS  Google Scholar 

  • Kumar Y, Tiwari KN, Nayak RK, Rai A, Singh SP, Singh AN, Kumar Y, Tomar H, Singh T, Raliya R (2020) Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian J Fertil 16(8):772–786

    Google Scholar 

  • Lambert M, Leven BA, & Green RM (2000). New methods of cleaning up heavy metal in soils and water. Environ Sci Technol Briefs Citiz Kans State Univ Manhattan KS

  • Lata S, Prabhakar R, Adak A, Samadder SR (2019) As (V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis. Environ Sci Pollut Res 26(31):32175–32188

    Article  CAS  Google Scholar 

  • Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB (2018) Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 48(7):646–652. https://doi.org/10.1080/10826068.2018.1479864

    Article  CAS  Google Scholar 

  • Lee JH, Kim MG, Yoo B, Myung NV, Maeng J, Lee T, Dohnalkova AC, Fredrickson JK, Sadowsky MJ, Hur HG (2007) Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. Proc Nat Acad Sci 104(51):20410–204015

    Article  CAS  Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomed 11:5931

    Article  CAS  Google Scholar 

  • Li Q, Ma C, White JC, **ng B (2021) Effects of phosphorus ensembled nanomaterials on nutrient uptake and distribution in Glycine max L. under simulated precipitation. Agronomy 11(6):1086

    Article  CAS  Google Scholar 

  • Liao X, Li Y, Yan X (2016) Removal of heavy metals and arsenic from a cocontaminated soil by sieving combined with washing process. J Environ Sci 41:202–210

    Article  CAS  Google Scholar 

  • Liu J, Simms M, Song S, King RS, Cobb GP (2018a) Physiological effects of copper oxide nanoparticles and arsenic on the growth and life cycle of rice (Oryza sativa japonica ‘Koshihikari’). Environ Sci Technol 52(23):13728–13737

    Article  CAS  Google Scholar 

  • Liu L, Li A, Chen J, Su Y, Li Y, Ma S (2018b) Isolation of a phytase-producing bacterial strain from agricultural soil and its characterization and application as an effective eco-friendly phosphate solubilizing bioinoculant. Comm Soil Sci Plant Anal 49:984–994

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018c) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu W, Zuo Q, Zhao C, Wang S, Shi Y, Liang S, Zhao C, Shen S (2018d) Effects of Bacillus subtilis and nanohydroxyapatite on the metal accumulation and microbial diversity of rapeseed (Brassica campestris L.) for the remediation of cadmium-contaminated soil. Environ Sci Pollut Res 25(25):25217–25226. https://doi.org/10.1007/s11356-018-2616-8

    Article  CAS  Google Scholar 

  • Liu Z, Lu B, **ao H, Liu D, Li X, Wang LA, Urbanovich O, Nagorskaya L (2019) Effect of mixed solutions of heavy metal eluents on soil fertility and microorganisms. Environ Pollut 254:112968. https://doi.org/10.1016/j.envpol.2019.112968

    Article  CAS  Google Scholar 

  • Lo SI, Chen PC, Huang CC, Chang HT (2012) Gold nanoparticle–aluminum oxide adsorbent for efficient removal of mercury species from natural waters. Environ Sci Technol 46(5):2724–2730. https://doi.org/10.1021/es203678v

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012). Transformations of nanomaterials in the environment. https://doi.org/10.1021/es300839e

  • Mahanta N, Ashok D, Montrishna R (2019) Nutrient use efficiency through nano fertilizers. Int J Chem Stud 7(3):2839–2842

    CAS  Google Scholar 

  • Mahanty S, Bakshi M, Ghosh S, Chatterjee S, Bhattacharyya S, Das P, Das S, Chaudhuri P (2019) Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from Sundarban mangrove ecosystem India. Bionanoscience 9(3):637–651. https://doi.org/10.1007/s12668-019-00644-w

    Article  Google Scholar 

  • Majeed S, Danish M, Mohamad Ibrahim MN, Sekeri SH, Ansari MT, Nanda A, Ahmad G (2021) Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J Cluster Sci 32(4):1083–1094. https://doi.org/10.1007/s10876-020-01876-7

    Article  CAS  Google Scholar 

  • Malini S, Kumar SV, Hariharan R, Bharathi AP, Devi PR, Hemananthan E (2020) Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Mater Today: Proc 1(21):828–832

    Article  Google Scholar 

  • Małkowski E, Kita A, Galas W, Karcz W, Kuperberg JM (2022) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37(1):69–76

    Article  Google Scholar 

  • Małkowski E, Sitko K, Zieleźnik-Rusinowska P, Gieroń Ż, Szopiński M (2019). Heavy metal toxicity: Physiological implications of metal toxicity in plants. In Plant metallomics and functional omics (pp. 253–301). Springer, Cham.

  • Mannucci S, Ghin L, Conti G, Tambalo S, Lascialfari A, Orlando T, Benati D, Bernardi P, Betterle N, Bassi R, Marzola P (2014) Magnetic nanoparticles from Magnetospirillum gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma. PLoS ONE 9(10):e108959. https://doi.org/10.1371/journal.pone.0108959

    Article  CAS  Google Scholar 

  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G (2021) Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ 769:145221. https://doi.org/10.1016/j.scitotenv.2021.145221

    Article  CAS  Google Scholar 

  • Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai PC, Pugazhendhi A, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol, B 205:111823

    Article  CAS  Google Scholar 

  • Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D (2021) Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment–a review. Ecotoxicol Environ Saf 15(226):112863

    Article  Google Scholar 

  • Mazumder A, Bhattacharya S, Bhattacharjee C (2020). Role of nano-photocatalysis in heavy metal detoxification. In Nanophotocatalysis and Environmental Applications (pp. 1–33). Springer, Cham.

  • Misra M, Ghosh SS (2021) Nanobioremediation of heavy metals: perspectives and challenges. J Basic Microbiol. https://doi.org/10.1002/jobm.202100384

    Article  Google Scholar 

  • Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J (2022) Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ-Sci 29:101865

    Article  Google Scholar 

  • Mohammadi H, Hatami M, Feghezadeh K, Ghorbanpour M (2018) Mitigating effect of nano-zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiol Plant 40(4):1–5. https://doi.org/10.1007/s11738-018-2647-2

    Article  CAS  Google Scholar 

  • Mohanty C, Satpathy SS, Mohanty S (2022). An Eco-Friendly Approach for the Eradication of Heavy Metal Contaminants by Nano-Bioremediation. InResearch Anthology on Emerging Techniques in Environmental Remediation (pp. 543–559). IGI Global.

  • Mughal B, Zaidi SZ, Zhang X, Hassan SU (2021) Biogenic nanoparticles: synthesis, characterisation and applications. Appl Sci 11(6):2598. https://doi.org/10.3390/app11062598

    Article  CAS  Google Scholar 

  • Nadhim K, Mahmood NN, Mustafa A (2021). Synthesized Gold Nanoparticles Using Pseudomonas Supernatant and Study the Physical Characterization–Antproliferative Activity of Breast Cancer Cells (MCF-7). Prof.(Dr) RK Sharma 21(1):1281.

  • Nagajyoti PC, Lee KD, Sreekanth TV (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri C (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8(1):1–7

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  • Nassar NN, Hassan A, Carbognani L, Lopez-Linares F, Pereira-Almao P (2012) Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 1(95):257–262

    Article  Google Scholar 

  • Neeli ST, Ramsurn H, Ng CY, Wang Y, Lu J (2020) Removal of Cr (VI), As (V), Cu (II), and Pb (II) using cellulose biochar supported iron nanoparticles: a kinetic and mechanistic study. J Environ Chem Eng 8(5):103886. https://doi.org/10.1016/j.jece.2020.103886

    Article  CAS  Google Scholar 

  • Nejad Z, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology, 7 Environ. Geochem Health 40:927–953

    Article  Google Scholar 

  • New Zealand Ministry for the Environment (NZME) (2012). Users’ Guide: National

  • Noman M, Ahmed T, Hussain S, Niazi MB, Shahid M, Song F (2020) Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. J Hazard Mater 398:123175

    Article  CAS  Google Scholar 

  • Ogunkunle CO, Falade FO, Oyedeji BJ, Akande FO, Vishwakarma V, Alagarsamy K, Ramachandran D, Fatoba PO (2021) Short-term aging of pod-derived biochar reduces soil cadmium mobility and ameliorates cadmium toxicity to soil enzymes and tomato. Environ Toxicol Chem 40(12):3306–3316

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  Google Scholar 

  • Ottoni CA, Neto ML, Léo P, Ortolan BD, Barbieri E, De Souza AO (2020) Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere 1(239):124698. https://doi.org/10.1016/j.chemosphere.2019.124698

    Article  CAS  Google Scholar 

  • P´erez AP, Sanchez´ SP, Van Liedekerke M (2015) Remediation sites and brownfields success stories in Europe; EUR 27530 EN; Publications Office of the European Union: Luxembourg

  • Palansooriya KN, Li J, Dissanayake PD, Suvarna M, Li L, Yuan X, Sarkar B, Tsang DC, Rinklebe J, Wang X, Ok YS (2022) Prediction of soil heavy metal immobilization by biochar using machine learning. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c08302

    Article  Google Scholar 

  • Pande V, Pandey SC, Sati D, Bhatt P, Samant M (2022) Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front Microbiol 6(13):824084. https://doi.org/10.3389/fmicb.2022.824084.PMID:35602036;PMCID:PMC9120775

    Article  Google Scholar 

  • Pandey G (2018) Prospects of nanobioremediation in environmental cleanup. Orient J Chem 34(6):2838

    Article  Google Scholar 

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102(22):10733–10736. https://doi.org/10.1016/j.biortech.2011.08.078

    Article  CAS  Google Scholar 

  • Park B, Son Y (2017) Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem 35:640–645

    Article  CAS  Google Scholar 

  • Patil SP, Burungale VV (2020). Physical and chemical properties of nanomaterials. InNanomedicines for Breast Cancer Theranostics (pp. 17–31). Elsevier.

  • Patil S, Chandrasekaran R (2020) Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genet Eng Biotechnol 18(1):1–23. https://doi.org/10.1186/s43141-020-00081-3

    Article  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049. https://doi.org/10.1007/s11356-012-1196-2

    Article  CAS  Google Scholar 

  • Pleus RC, Murashov V (2018) Physico-chemical properties of nanomaterials. CRC

  • Poguberović SS, Krčmar DM, Dalmacija BD et al (2016) Removal of Ni (II) and Cu (II) from aqueous solutions using ‘green’ zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Water Sci Technol 74:2115–2123

    Article  Google Scholar 

  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93

    Article  CAS  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6(111):109862–109877. https://doi.org/10.1039/C6RA10966G

    Article  CAS  Google Scholar 

  • Prado-Audelo D, García Kerdan I, Escutia-Guadarrama L, Reyna-González JM, Magaña JJ, Leyva-Gómez G (2021) Nanoremediation: nanomaterials and nanotechnologies for environmental cleanup. Front Environ Sci. https://doi.org/10.3389/fenvs.2021.793765

    Article  Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72. https://doi.org/10.1016/j.jcis.2009.10.003

    Article  CAS  Google Scholar 

  • Prasad KS, Gandhi P, Selvaraj K (2014) Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl Surf Sci 317:1052–1059

    Article  CAS  Google Scholar 

  • Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens Actuators, B Chem 238:888–902. https://doi.org/10.1016/j.snb.2016.06.081

    Article  CAS  Google Scholar 

  • Provoost J, Cornelis C, Swartjes F (2006) Comparison of soil clean-up standards for trace elements between countries: why do they differ? J Soils Sediments 6(3):173–181

    Article  CAS  Google Scholar 

  • Raffa CM, Chiampo F, Shanthakumar S (2021) Remediation of metal/metalloid-polluted soils: a short review. Appl Sci 11(9):4134. https://doi.org/10.3390/app11094134

    Article  CAS  Google Scholar 

  • Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Env Monit Assess 191(7):1–21. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 1(125):365–385. https://doi.org/10.1016/j.envint.2019.01.067

    Article  CAS  Google Scholar 

  • Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam K, Shende S, Gaikwad S, Ingle A (2021) Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J Fungi 7(2):139. https://doi.org/10.3390/jof7020139

    Article  CAS  Google Scholar 

  • Raidongia K, Tan AT, Huang J (2014). Graphene oxide: some new insights into an old material. In Carbon Nanotubes and Graphene (pp. 341–374). Elsevier https://doi.org/10.1016/j.ecoenv.2021.112437

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 15(462):166–175

    Article  Google Scholar 

  • Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and countermeasures. JNKVV Res J 49(3):320–337

    Google Scholar 

  • Rajora N, Kaushik S, Jyoti A, Kothari SL (2016) Rapid synthesis of silver nanoparticles by Pseudomonas stutzeri isolated from textile soil under optimised conditions and evaluation of their antimicrobial and cytotoxicity properties. IET Nanobiotechnol 10(6):367–373

    Article  Google Scholar 

  • Rajput VD, Minkina T, Kumari A, Shende SS, Ranjan A, Faizan M, Barakvov A, Gromovik A, Gorbunova N, Rajput P, Singh A (2022) A review on nanobioremediation approaches for restoration of contaminated soil. Eurasian J Soil Sci 11(1):43–60

    CAS  Google Scholar 

  • Recillas S, García A, González E, Casals E, Puntes V, Sánchez A, Font X (2011) Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: toxicity of nanoparticles and derived compounds. Desalination 277(1–3):213–20

    Article  CAS  Google Scholar 

  • Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R (2021) Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Rep 31:1–5

    Google Scholar 

  • Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R (2022) A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 12:43. https://doi.org/10.3390/biom12010043

    Article  CAS  Google Scholar 

  • Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

    Article  CAS  Google Scholar 

  • Rizvi A, Khan MS (2019a) Putative role of bacterial biosorbent in metal sequestration revealed by SEM-EDX and FTIR. Indian J Microbiol 59(2):246–249

    Article  Google Scholar 

  • Rizvi A, Ahmed B, Zaidi A, Khan MS (2019b) Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicology 28(3):302–322

    Article  CAS  Google Scholar 

  • Rizvi A, Zaidi A, Ahmad B, Ameen F, Al Kahtani MDF, Khan MS (2020) Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 10:38379–38403

    Article  CAS  Google Scholar 

  • Rizvi A, Ahmed B, Khan MS, Rajput V, Umar S, Minkina T, Lee J (2022) Maize associated bacterial microbiome linked mitigation of heavy metal stress: a multidimensional detoxification approach. Environ Exp Bot 200:104911

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, ur Rehman MZ, Riaz M, Adrees M, Hussain A, Zahir ZA, Rinklebe J (2021) Effects of nanoparticles on trace element uptake and toxicity in plants: a review. Ecotoxicol Environ Saf 15(221):112437. https://doi.org/10.1016/j.ecoenv.2021.112437

    Article  CAS  Google Scholar 

  • Rizwan M, Ahmed MU (2018).Nanobioremediation: ecofriendly application of nanomaterials. Handbook of Ecomaterials.:1–3.

  • Rodríguez-Serrano C, Guzmán-Moreno J, Ángeles-Chávez C, Rodríguez-González V, Ortega-Sigala JJ, Ramírez-Santoyo RM, Vidales-Rodríguez LE (2020) Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS ONE 15(3):e0230275

    Article  Google Scholar 

  • Roy A, Bharadvaja N (2021) Efficient removal of heavy metals from artificial wastewater using biochar. Environ Nanotechnol, Monit Manag 1(16):100602. https://doi.org/10.1016/j.enmm.2021.100602

    Article  CAS  Google Scholar 

  • Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, Kakkar A (2020) Effect of physico-chemical properties of nanoparticles on their intracellular uptake. Int J Mol Sci 21(21):8019. https://doi.org/10.3390/ijms21218019

    Article  CAS  Google Scholar 

  • Safdar LB, Almas F, ur RehmanUmerShahUddinAshfaqRahmanQuraishi AMJSMSSHUUM (2020) Genetic dissection of Ni toxicity in a spring wheat diversity panel by using 90 K SNP array. Curr Plant Biol 1(24):100175. https://doi.org/10.1016/j.cpb.2020.100175

    Article  Google Scholar 

  • Salam LB, Shomope H, Ummi Z, Bukar F (2019) Mercury contamination imposes structural shift on the microbial community of an agricultural soil. Bull Nat Res Centre 43(1):1–13

    Article  Google Scholar 

  • Sall ML, Diaw AK, Gningue-Sall D, Efremova Aaron S, Aaron JJ (2020) Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27(24):29927–29942. https://doi.org/10.1007/s11356-020-09354-3

    Article  CAS  Google Scholar 

  • Samrot AV, Angalene J, Roshini SM, Raji P, Stefi SM, Preethi R, Selvarani AJ, Madankumar A (2019) Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. J Clust Sci 30(6):1599–1610. https://doi.org/10.1007/s10876-019-01602-y

    Article  CAS  Google Scholar 

  • Sandil S, Dobosy P, Kröpfl K, Füzy A, Óvári M, Záray G (2019) Effect of irrigation water containing arsenic on elemental composition of bean and lettuce plants cultivated in calcareous sandy soil. Food Prod Process Nutr 1(1):1. https://doi.org/10.1186/s43014-019-0014-3

    Article  Google Scholar 

  • Sanjosé I, Navarro-Roldán F, Infante-Izquierdo MD, Martínez-Sagarra G, Devesa JA, Polo A, Ramírez-Acosta S, Sánchez-Gullón E, Jiménez-Nieva FJ, Muñoz-Rodríguez AF (2021) Accumulation and Effect of heavy metals on the germination and growth of Salsola vermiculata L. Seedl Divers 13(11):539. https://doi.org/10.3390/d13110539

    Article  CAS  Google Scholar 

  • Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P (2014) Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresour Technol 165:270–273

    Article  CAS  Google Scholar 

  • Sayadi MH, Salmani N, Heidari A, Rezaei MR (2018) Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surf Interfaces 10:136–143

    Article  CAS  Google Scholar 

  • SEPA, U.E.P.A., 2009. National Priorities List (NPL). Available: http://www.epa.gov/superfund/sites/npl/

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast Rhodosporidium Diobovatum. Biotechnol Prog 27(5):1464–1469. https://doi.org/10.1002/btpr.651

    Article  CAS  Google Scholar 

  • Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M (2020) Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 1(259):127436. https://doi.org/10.1016/j.chemosphere.2020.127436

    Article  CAS  Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938. https://doi.org/10.3390/agronomy10070938

    Article  CAS  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley

    Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):100. https://doi.org/10.3390/plants9010100

    Article  CAS  Google Scholar 

  • Shin J, Lee KY, Yeo T, Choi W (2016) Facile one-pot transformation of iron oxides from Fe2O3 nanoparticles to nanostructured Fe3O4@ C core-shell composites via combustion waves. Sci Rep 6(1):1. https://doi.org/10.1038/srep21792

    Article  CAS  Google Scholar 

  • Shittu KO, Ihebunna O (2017) Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract. Adv Nat Sci: Nanosci Nanotechnol 8(4):045003

    Google Scholar 

  • Shokati Poursani A, Nilchi A, Hassani A, Tabibian S, Asad Amraji L (2017) Synthesis of nano-γ-Al2O3/chitosan beads (AlCBs) and continuous heavy metals removal from liquid solution. Int J Environ Sci Technol 14(7):1459–1468. https://doi.org/10.1007/s13762-017-1357-4

    Article  CAS  Google Scholar 

  • Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, Yang Z, Gao F, Zeng M (2020) Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and cap** agents. Nanoscale Res Lett 15(1):1–9. https://doi.org/10.1186/s11671-019-3244-z

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12(1):1–8. https://doi.org/10.1186/s11671-017-1861-y

    Article  CAS  Google Scholar 

  • Sigua GC, Novak JM, Watts DW, Ippolito JA, Ducey TF, Johnson MG, Spokas KA (2019) Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments 6:69

    Article  Google Scholar 

  • Sikder M, Wang J, Poulin BA, Tfaily MM, Baalousha M (2020) Nanoparticle size and natural organic matter composition determine aggregation behavior of polyvinylpyrrolidone coated platinum nanoparticles. Environ Sci: Nano 7(11):3318–3332. https://doi.org/10.1039/D0EN00659A

    Article  CAS  Google Scholar 

  • Singh E, Osmani RA, Banerjee R (2020). Nanobioremediation: an emerging approach for a cleaner environment. In Microbial Bioremediation & Biodegradation (pp. 309–363). Springer, Singapore.

  • Sivarajasekar N, Mohanraj N, Baskar R, Sivamani S (2018) Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling. Arab J Sci Eng 43(5):2205–2215. https://doi.org/10.1007/s13369-017-2565-4

    Article  CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  Google Scholar 

  • Souri MK, Hatamian M, Tesfamariam T (2019) Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem Biol Technol Agric 6(1):1–7. https://doi.org/10.1186/s40538-019-0170-3

    Article  CAS  Google Scholar 

  • Stanković M, Topuzović M, Marković A, Pavlović D, Đelić G, Bojović B, Branković S (2010) Influence of zinc (Zn) on germination of wheat (Triticum aestivum L.). Biotechnol Biotechnol Equip 24(sup1):236–9

    Article  Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27(5):1861–1869. https://doi.org/10.1007/s10811-014-0492-2

    Article  CAS  Google Scholar 

  • Sun Y, Zheng F, Wang W, Zhang S, Wang F (2020) Remediation of Cr(VI)-contaminated soil by nano-zero-valent iron in combination with biochar or humic acid and the consequences for plant performance. Toxics 8:26

    Article  CAS  Google Scholar 

  • Sun H, Shao C, ** Q (2022) Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiol 22:77. https://doi.org/10.1186/s12866-022-02488-z

    Article  CAS  Google Scholar 

  • Tabesh S, Davar F, Loghman-Estarki MR (2018) Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloy Compd 5(730):441–449. https://doi.org/10.1016/j.jallcom.2017.09.246

    Article  CAS  Google Scholar 

  • Tahar LB, Oueslati MH, Abualreish MJ (2018) Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions. J Colloid Interface Sci 15(512):115–126. https://doi.org/10.1016/j.jcis.2017.10.044

    Article  CAS  Google Scholar 

  • Tanzania Minister of State (TMS) (2007). The environmental management (soil quality standards) regulations, Vice President’s Office – Environment

  • Thomas M, Benov L (2018) The contribution of superoxide radical to cadmium toxicity in E. coli. Biol Trace Elem Res 181:361–368

    Article  CAS  Google Scholar 

  • Tóth G, Hermann T, Da Silva MR, Montanarella LJEI (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37(1):1–3

    CAS  Google Scholar 

  • Uchimiya M, Bannon D, Nakanishi H, McBride MB, Williams MA, Yoshihara T (2020) Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J Agric Food Chem 68(46):12856–12869

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  • Ullah A, Ma Y, Li J, Tahir N, Hussain B (2020) Effective amendments on cadmium, arsenic, chromium and lead contaminated paddy soil for rice safety. Agronomy 10:359

    Article  CAS  Google Scholar 

  • Ullah N, Ur Rehman M, Ahmad B, Ali I, Younas M, Aslam MS, Rahman AU, Taheri E, Fatehizadeh A, Rezakazemi M (2022) Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. Plos one 17(6):e0267719

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2002). Supplemental guidance for develo** soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, Washington, D.C.

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 15(721):137778. https://doi.org/10.1016/j.scitotenv.2020.137778

    Article  CAS  Google Scholar 

  • Vanisree CR, Sankhla MS, Singh P, Jadhav EB, Verma RK, Awasthi KK, Awasthi G, Nagar V (2022) Heavy metal contamination of food crops: transportation via food chain. Hum Consum, Toxic Manag Strategies. https://doi.org/10.5772/intechopen.101938

    Article  Google Scholar 

  • Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 11(5):2804–2837

    Article  CAS  Google Scholar 

  • Vareda JP, Valente AJ, Durães L (2019) Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manag 15(246):101–118. https://doi.org/10.1016/j.jenvman.2019.05.126

    Article  CAS  Google Scholar 

  • Vasilachi IC, Minut M, Betianu C, Gavrilescu M (2021). Investigation of the Toxic Effects of Lead on Maize Germination and Growth (Zea mays). In2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1–4). IEEE.

  • Vodyanitskii YN (2016) Standards for the contents of heavy metals in soils of some states. Ann Agrar Sci 14(3):257–263

    Article  Google Scholar 

  • Wakeel A, Xu M (2020) Chromium morpho-phytotoxicity. Plants 9(5):564

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227

    Article  CAS  Google Scholar 

  • Wang L, Zhang C, Gao F, Mailhot G, Pan G (2017b) Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr (VI) removal under visible light. Chem Eng J 15(314):622–630. https://doi.org/10.1016/j.cej.2016.12.020

    Article  CAS  Google Scholar 

  • Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG (2017c) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

    Article  CAS  Google Scholar 

  • Wang P, Hu X, He Q, Waigi MG, Wang J, Ling W (2018) Using calcination remediation to stabilize heavy metals and simultaneously remove polycyclic aromatic hydrocarbons in soil. Int J Environ Res Public Health 15(8):1731. https://doi.org/10.3390/ijerph15081731

    Article  CAS  Google Scholar 

  • Wang G, Pan X, Zhang S, Zhong Q, Zhou W, Zhang X, Wu J, Vijver MG, Peijnenburg WJGM (2020a) Remediation of heavy metal contaminated soil by biodegradable chelator–induced washing: efficiencies and mechanisms. Environ Res 186:109554

    Article  CAS  Google Scholar 

  • Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok YS, Tack FM, Rinklebe J (2020) Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Crit Rev Environ Sci Technol 50(24):2724–2774. https://doi.org/10.1080/10643389.2019.1705724

    Article  Google Scholar 

  • Wang H, Zhong G, Shi G, Pan F (2010). Toxicity of Cu, Pb, and Zn on seed germination and young seedlings of wheat (Triticum aestivum L.). In International Conference on Computer and Computing Technologies in Agriculture Springer, Berlin, Heidelberg.

  • Watts MP, Coker VS, Parry SA, et al (2015) Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr (VI) leachate and chromite ore processing residue. Appl Geochem 54:27–42

    Article  CAS  Google Scholar 

  • Wei Y, Fang Z, Zheng L, Tsang EP (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci 399:322–329

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices2011.

  • Wyszkowska J, Borowik A, Kucharski MA, Kucharski J (2013) Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J Elementol 18:2587–2602

    Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, **e GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 1(424):1. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  Google Scholar 

  • Xu J, Liu C, Hsu PC, Zhao J, Wu T, TangF J, Liu K, Cui Y (2019) Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat Commun 10:2240

    Google Scholar 

  • Xue W, Peng Z, Huang D, Zeng G, Wan J, Xu R, Cheng M, Zhang C, Jiang D, Hu Z (2018a) Nanoremediation of cadmium contaminated river sediments: microbial response and organic carbon changes. J Hazard Mater 359:290–299

    Article  CAS  Google Scholar 

  • Xue W, Peng Z, Huang D, Zeng G, Wan J, Xu R, Cheng M, Zhang C, Jiang D, Hu Z (2018b) Nanoremediation of cadmium contaminated river sediments: microbial response and organic carbon changes. J Hazard Mater 5(359):290–299. https://doi.org/10.1016/j.jhazmat.2018.07.062

    Article  CAS  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar VJ (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757

    CAS  Google Scholar 

  • Yan FF, Wu C, Cheng YY, He YR, Li WW, Yu HQ (2013) Carbon nanotubes promote Cr (VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 15(77):183–189. https://doi.org/10.1016/j.bej.2013.06.009

    Article  CAS  Google Scholar 

  • Yang SX, Liao B, Li JT, Guo T, Shu WS (2010) Acidification, heavy metal mobility and nutrient accumulation in the soil–plant system of a revegetated acid mine wasteland. Chemosphere 80(8):852–859

    Article  CAS  Google Scholar 

  • Yang Y, Zhou X, Tie B, Peng L, Li H, Wang K, Zeng Q (2017) Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188:148–156

    Article  CAS  Google Scholar 

  • Yang Z, Shi W, Yang W, Liang L, Yao W, Chai L, Gao S, Liao Q (2018) Combination of bioleaching by gross bacterial biosurfactants and flocculation: a potential remediation for the heavy metal contaminated soils. Chemosphere 206:83–91

    Article  CAS  Google Scholar 

  • Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3):424. https://doi.org/10.3390/nano9030424

    Article  CAS  Google Scholar 

  • Yang X, Liu L, Tan W, Liu C, Dang Z, Qiu G (2020) Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environ Pollut 264:114745. https://doi.org/10.1016/j.envpol.2020.114745

    Article  CAS  Google Scholar 

  • Yogeshwaran V, Priya AK (2019) Removal of heavy metals using nano-particles–a review. Indian J Environ Protect 39(1):17–21

    Google Scholar 

  • Yu G, Wang X, Liu J, Jiang P, You S, Ding N, Guo Q, Lin F (2021) Applications of nanomaterials for heavy metal removal from water and soil: a review. Sustainability 13(2):713. https://doi.org/10.3390/su13020713

    Article  CAS  Google Scholar 

  • Zaynab M, Al-Yahyai R, Ameen A, Sharif Y, Ali L, Fatima M, Khan KA, Li S (2022) Health and environmental effects of heavy metals. J King Saud Univ-Sci 34(1):101653. https://doi.org/10.1016/j.jksus.2021.101653

    Article  Google Scholar 

  • Zehlike L, Peters A, Ellerbrock RH, Degenkolb L, Klitzke S (2019) Aggregation of TiO2 and Ag nanoparticles in soil solution–effects of primary nanoparticle size and dissolved organic matter characteristics. Sci Total Environ 20(688):288–298. https://doi.org/10.1016/j.scitotenv.2019.06.020

    Article  CAS  Google Scholar 

  • Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99

    Article  CAS  Google Scholar 

  • Zhang M, Yi K, Zhang X, Han P, Liu W, Tong M (2020) Modification of zero valent iron nanoparticles by sodium alginate and bentonite: enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity. J Hazard Mater 388:121822

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759. https://doi.org/10.1021/jf405476u

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759. https://doi.org/10.1021/es5047099

    Article  CAS  Google Scholar 

  • Zhao F, **n X, Cao Y, Su D, Ji P, Zhu Z, He Z (2021) Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials 11(10):2717

    Article  CAS  Google Scholar 

  • Zheng X, Cao H, Liu B, Zhang M, Zhang C, Chen P, Yang B (2022) Effects of mercury contamination on microbial diversity of different kinds of soil. Microorganisms 10:977. https://doi.org/10.3390/microorganisms10050977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saleem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, S., Rizvi, A. & Khan, M.S. Microbiome-mediated nano-bioremediation of heavy metals: a prospective approach of soil metal detoxification. Int. J. Environ. Sci. Technol. 20, 12823–12846 (2023). https://doi.org/10.1007/s13762-022-04684-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04684-w

Keywords

Navigation