Log in

Impedimetric sensor for iron (III) detection based on small molecule (E)-2-((phenylimino)methyl) phenol-modified platinum electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The critical role of ferric ions in biological system and health impact posed to humans due to related toxicity caused by the consumption of iron-contaminated drinking water or food, as well as exposure to the other environmental sector, needs a sensitive method for the determination of these ions in various domains such us medical uses, biological and environmental samples. Herein, a novel impedimetric sensor based on the bases Schiff molecule, (E)-2-((phenylimino)methyl) phenol (E-PNMP), was investigated for the quantification of ferric ions. The ability to recognize ferric ions with E-PNMP was characterized by UV–Vis, which indicated that we obtained a complex E-PNMP/Fe3+ with a stoichiometry (1:2). The E-PNMP-modified electrode was characterized by electrochemical impedance spectroscopy (EIS). Under the optimal conditions, the proposed impedimetric sensor exhibits a limit of detection of 2.49 × 10–12 M in the range of concentration from 10–12 to 10–5 M. Thus, the investigated impedimetric sensor showed high sensibility, selectivity, reproducibility, and repeatability. A Pt/E-PNMP electrode was successfully applied for the determination of iron (III) in a real sample. Furthermore, to better understand the sensing mechanism of E-PNMP/iron, a computational study with DFT was conducted using the B3LYP functional and the 6311++G (d, p) basis set. The theoretical studies confirmed the formation of the complex Fe3+: E-PNMP 2 with high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X. Pang et al., Visual recognition of aliphatic and aromatic amines using a fluorescent gel: application of a sonication-triggered organogel. ACS Appl. Mater. Interfaces (2015). https://doi.org/10.1021/acsami.5b03000

    Article  PubMed  Google Scholar 

  2. V.A. Online, Luminescent Cd (II)—organic frameworks with and antibiotics † (2017). https://doi.org/10.1039/C7TA03849F

  3. M.W. Hentze, M.U. Muckenthaler, B. Galy, C. Camaschella, Review Two to tango : regulation of mammalian iron metabolism. Cell 142, 24–38 (2010). https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  4. X. Liu, E.C. Theil, Ferritins : dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 38(3), 167–175 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. F. Sefid, A. Alagheband, B. Maryam, D. Robab, N. Zahra, In silico analysis for determination and validation of iron-regulated protein from Escherichia coli. Int. J. Pept. Res. Ther. 25(4), 1523–1537 (2019). https://doi.org/10.1007/s10989-018-9797-3

    Article  CAS  Google Scholar 

  6. L. Yan, A colorimetric and fluorescent probe based on rhodamine B for detection of Fe3+ and Cu2+ Ions. J Fluoresc 29, 1221–1226 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. F. Busti, G. Marchi, S. Ugolini, A. Castagna, D. Girelli, Anemia and iron deficiency in cancer patients : role of iron replacement therapy. Pharmaceuticals (2018). https://doi.org/10.3390/ph11040094

    Article  PubMed  PubMed Central  Google Scholar 

  8. V.C. Chang, M. Cotterchio, E. Khoo, Iron intake, body iron status, and risk of breast cancer : a systematic review and meta-analysis. BMC Cancer (2019). https://doi.org/10.1186/s12885-019-5642-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. L. Du et al., Increased iron deposition on brain quantitative susceptibility map** correlates with decreased cognitive function in Alzheimer ’ s disease. ACS Chem. Neurosci. 9, 1849–1857 (2018). https://doi.org/10.1021/acschemneuro.8b00194

    Article  CAS  PubMed  Google Scholar 

  10. Z. Liu, H. Shen, T. Lian, L. Mao, S. Tang, L. Sun, Iron deposition in substantia nigra: abnormal iron metabolism, neuroinflammatory mechanism and clinical relevance. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14721-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. K.-M. Vuori, Aquatic ecotoxicology-study of freshwater systems stressed by toxic chemical (1995)

  12. J. De Jong, N. Mattielli, High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation. Anal. Chim. Acta. 3, 126–139 (2008). https://doi.org/10.1016/j.aca.2008.06.013

    Article  CAS  Google Scholar 

  13. W. Ruengsitagoon, Reverse flow injection spectrophotometric determination of iron (III) using chlortetracycline reagent. Talanta 74, 1236–1241 (2008). https://doi.org/10.1016/j.talanta.2007.08.031

    Article  CAS  PubMed  Google Scholar 

  14. B. Peng, Y. Shen, Z. Gao, M. Zhou, Y. Ma, S. Zhao, Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chem (2014). https://doi.org/10.1016/j.foodchem.2014.12.084

    Article  PubMed  Google Scholar 

  15. Y. Ogasawara, K. Ishii, T. Togawa, S. Tanabet, Determination of trace amounts of sulphide in human red blood cells by high-performance liquid chromatography with fluorimetric detection after derivatization With pphenylenediamine and iron(iii). Analyst 116, 1359–1363 (1991)

    Article  CAS  PubMed  Google Scholar 

  16. H. Sohrabi, A. Khataee, S. Ghasemzadeh, M.R. Majidi, Y. Orooji, Layer double hydroxides (LDHs)- based electrochemical and optical sensing assessments for quantification and identification of heavy metals in water and environment samples: a review of status and prospects. Trends Environ. Anal. Chem. (2021). https://doi.org/10.1016/j.teac.2021.e00139

    Article  Google Scholar 

  17. É.N. Oiye et al., Electrochemical sensors containing schiff bases and their transition metal complexes to detect analytes of forensic, pharmaceutical and environmental interest. A review. Crit. Rev. Anal. Chem. 49(6), 488–509 (2019). https://doi.org/10.1080/10408347.2018.1561242

    Article  CAS  PubMed  Google Scholar 

  18. J.M.S. Alshawi, M.Q. Mohammed, H.F. Alesary, H.K. Ismail, S. Barton, Voltammetric Determination of Hg2+, Zn2+, and Pb2+ ions using a PEDOT/NTA-modified electrode. ACS Omega (2022). https://doi.org/10.1021/ACSOMEGA.2C02682/ASSET/IMAGES/LARGE/AO2C02682_0016.JPEG

    Article  PubMed  PubMed Central  Google Scholar 

  19. E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11), 913–947 (2003). https://doi.org/10.1002/ELAN.200390114

    Article  CAS  Google Scholar 

  20. E.B. Bahadir, M.K. Sezgintürk, A review on impedimetric biosensors. Artif. Cells Nanomedicine Biotechnol. 44(1), 248–262 (2014). https://doi.org/10.3109/21691401.2014.942456

    Article  CAS  Google Scholar 

  21. B. Szemenyei et al., When crown ethers finally click: novel, click-assembled, fluorescent enantiopure pyridino-crown ether-based chemosensors—and an N-2-aryl-1,2,3-triazole containing one. New J. Chem. (2021). https://doi.org/10.1039/d1nj04173h

    Article  Google Scholar 

  22. L. Zhao et al., A porphyrin-based optical sensor membrane prepared by electrostatic self-assembled technique for online detection of cadmium(II). Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2019.124552

    Article  PubMed  PubMed Central  Google Scholar 

  23. L. Eddaif, A. Shaban, J. Telegdi, Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. Int. J. Environ. Anal. Chem. 99(9), 824–853 (2019). https://doi.org/10.1080/03067319.2019.1616708

    Article  CAS  Google Scholar 

  24. S.M. Saleh, R. Ali, I.A.I. Ali, A novel, highly sensitive, selective, reversible and turn-on chemi-sensor based on Schiff base for rapid detection of Cu(II). Spectrochim. Acta A Mol. Biomol. Spectrosc. 183, 225–231 (2017). https://doi.org/10.1016/j.saa.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  25. S. Lee et al., Iron detection and remediation with a functionalized porous polymer applied to environmental water samples. Chem. Sci. 10(27), 6651–6660 (2019). https://doi.org/10.1039/C9SC01441A

    Article  PubMed  PubMed Central  Google Scholar 

  26. R.M. Irfan et al., Synthesis of new cadmium(II) complexes of Schiff bases as alkaline phosphatase inhibitors and their antimicrobial activity. Arab. J. Chem. (2021). https://doi.org/10.1016/j.arabjc.2021.103308

    Article  Google Scholar 

  27. M.Q. Mohammed, H.K. Ismail, H.F. Alesary, S. Barton, Use of a Schiff base-modified conducting polymer electrode for electrochemical assay of Cd(II) and Pb(II) ions by square wave voltammetry. Chem. Pap. 76(2), 715–729 (2022). https://doi.org/10.1007/S11696-021-01882-7/TABLES/5

    Article  CAS  Google Scholar 

  28. J. Fan et al., A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym. 228(September), 2020 (2019). https://doi.org/10.1016/j.carbpol.2019.115379

    Article  CAS  Google Scholar 

  29. R. Patil et al., Ratiometric fluorescent scaffold giving discrete response towards iodide ion: a combined experimental and DFT study. J. Mol. Recognit. 27(11), 683–688 (2014). https://doi.org/10.1002/jmr.2392

    Article  CAS  PubMed  Google Scholar 

  30. A. Lealem, I. Mohiuddin, A. Kumar, J. Singh, V. Kumar, K. Kim, A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem. 116, 74–91 (2019). https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  31. S. Agren, M. Chaabene, A.R. Allouche, R. BenChaâbane, M. Lahcinie, M.H.V. Baouab, Blue highly fluorescent boranil derived from anil ligand: synthesis, characterization, experimental and theoretical evaluation of solvent effect on structures and photophysical properties. Appl. Organomet. Chem. 34(9), 1–15 (2020). https://doi.org/10.1002/aoc.5764

    Article  CAS  Google Scholar 

  32. J.W. Jebaraj, C. Balakrishnan, Biocompatible alkyne arms containing Schiff base fluorescence indicator for dual detection of Cd II and Pb II at physiological pH and its application to live cell imaging. Analyst 145, 4576–4586 (2020). https://doi.org/10.1039/d0an00862a

    Article  CAS  Google Scholar 

  33. D. Brian, E. Benjamin, P.S. Solidi, D. Brian, E. Benjamin, P.S. Solidi, Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi 252(8), 1700–1710 (2015). https://doi.org/10.7282/T3W097T7

    Article  Google Scholar 

  34. M. Echabaane, A. Rouis, I. Bonnamour, H. ben Ouada, Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix [4 ] arene derivative. SAA 115, 269–274 (2013). https://doi.org/10.1016/j.saa.2013.06.053

    Article  CAS  Google Scholar 

  35. D. Najlaoui, M. Echabaane, A. ben Khélifa, A. Rouis, H. ben Ouada, Photoelectrochemical impedance spectroscopy sensor for cloxacillin based on tetrabutylammonium octamolybdate. J. Solid State Electrochem. 23(12), 3329–3341 (2019). https://doi.org/10.1007/S10008-019-04440-0/FIGURES/10

    Article  CAS  Google Scholar 

  36. A. Rouis, M. Echabaane, N. Sakly, I. Dumazet-Bonnamour, H. BenOuada, Electrochemical analysis of a PPV derivative thin film doped with ß-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions. Synth. Met. 164, 78–87 (2013). https://doi.org/10.1016/J.SYNTHMET.2013.01.005

    Article  CAS  Google Scholar 

  37. F. Zina, N.M. Nooredeen, S. Azzouzi, M. ben Ali, M.N. Abbas, A. Errachid, Novel sensitive impedimetric microsensor for phosphate detection based on a novel copper phthalocyanine derivative. Anal. Lett. 51(3), 371–386 (2018). https://doi.org/10.1080/00032719.2017.1322096

    Article  CAS  Google Scholar 

  38. P. Hashemi, A. Afkhami, H. Bagheri, S. Amidi, T. Madrakian, Fabrication of a novel impedimetric sensor based on L-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra. Anal. Chim. Acta 984, 185–192 (2017). https://doi.org/10.1016/j.aca.2017.06.038

    Article  CAS  PubMed  Google Scholar 

  39. M. Echabaane, S. Hfaiedh, B. Smiri, F. Saidi, C. Dridi, Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water. J. Solid State Electrochem. 25, 1797–1806 (2021). https://doi.org/10.1007/s10008-021-04949-3

    Article  CAS  Google Scholar 

  40. S. Kaur, I. Kaur, Self-assembly of p-aminothiophenol on gold surface: application for impedimetric and potentiometric sensing of cobalt (II) ions—a comparative study. Electroanalysis 31(12), 2507–2517 (2019). https://doi.org/10.1002/elan.201900187

    Article  CAS  Google Scholar 

  41. H.F. Alesary, H.K. Ismail, M.Q. Mohammed, H.N. Mohammed, Z.K. Abbas, S. Barton, A comparative study of the effect of organic dopant ions on the electrochemical and chemical synthesis of the conducting polymers polyaniline, poly(o-toluidine) and poly(o-methoxyaniline). Chem. Pap. 75(10), 5087–5101 (2021). https://doi.org/10.1007/S11696-020-01477-8/TABLES/4

    Article  CAS  Google Scholar 

  42. H. Touzi, Y. Chevalier, F. Bessueille, H. BenOuada, N. Jaffrezic-Renault, Detection of dyestuffs with an impedimetric sensor based on Cu2+-methyl-naphthyl cyclen complex functionalized gold electrodes. Sens. Actuators B Chem. 273, 1211–1221 (2018). https://doi.org/10.1016/j.snb.2018.07.011

    Article  CAS  Google Scholar 

  43. C. Verma, L.O. Olasunkanmi, T.W. Quadri, E.S.M. Sherif, E.E. Ebenso, Gravimetric, electrochemical, surface morphology, DFT, and Monte Carlo simulation studies on three N-substituted 2-aminopyridine derivatives as corrosion inhibitors of mild steel in acidic medium. J. Phys. Chem. C 122(22), 11870–11882 (2018). https://doi.org/10.1021/acs.jpcc.8b02740

    Article  CAS  Google Scholar 

  44. C. Verma, J. Haque, E.E. Ebenso, M.A. Quraishi, Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: chemical, electrochemical, surface and DFT studies. Results Phys. 9, 100–112 (2018). https://doi.org/10.1016/j.rinp.2018.02.018

    Article  Google Scholar 

  45. C. Verma, I.B. Obot, I. Bahadur, E.S.M. Sherif, E.E. Ebenso, Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies. Appl. Surf. Sci. 457, 134–149 (2018). https://doi.org/10.1016/j.apsusc.2018.06.035

    Article  CAS  Google Scholar 

  46. X. **e et al., Study of heterogeneous electron transfer on the graphene/self-assembled monolayer modified gold electrode by electrochemical approaches. J. Phys. Chem. C 114(33), 14243–14250 (2010). https://doi.org/10.1021/jp102446w

    Article  CAS  Google Scholar 

  47. K. Mahato, B. Purohit, K. Bhardwaj, A. Jaiswal, P. Chandra, Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.111502

    Article  PubMed  Google Scholar 

  48. S. Kaur, B.A. Shiekh, D. Kaur, I. Kaur, Highly sensitive sensing of Fe(III) harnessing Schiff based ionophore: an electrochemical approach supported with spectroscopic and DFT studies. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.115954

    Article  Google Scholar 

  49. S.F. Chin, S.C. Tan, S.C. Pang, S.M. Ng, Nitrogen doped carbon nanodots as fluorescent probes for selective detection and quantification of Ferric(III) ions. Opt. Mater. (Amst) 73, 77–82 (2017). https://doi.org/10.1016/j.optmat.2017.08.006

    Article  CAS  Google Scholar 

  50. V.D. Doan et al., Efficient and fast degradation of 4-nitrophenol and detection of Fe(III) ions by Poria cocos extract stabilized silver nanoparticles. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2021.131894

    Article  PubMed  Google Scholar 

  51. D.M. Arvapalli, A.T. Sheardy, K.C. Alapati, J. Wei, High quantum yield fluorescent carbon nanodots for detection of Fe (III) Ions and electrochemical study of quenching mechanism. Talanta (2020). https://doi.org/10.1016/j.talanta.2019.120538

    Article  PubMed  Google Scholar 

  52. N. Kaur, R. Kaur, R. Kaur, S. Rana, Synthesis of novel benzothiazole based fluorescent and redox-active organic nanoparticles for their application as selective and sensitive recognition of Fe3+ ions. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108648

    Article  Google Scholar 

  53. R. Ferreira, J. Chaar, M. Baldan, N. Braga, Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic strip** voltammetry and boron-doped diamond electrodes. Fuel (2021). https://doi.org/10.1016/j.fuel.2020.120104

    Article  PubMed  Google Scholar 

  54. N. Prabavathi, A. Nilufer, V. Krishnakumar, Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), NBO and HOMO-LUMO analysis of 2-quinoxaline carboxylic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 92, 325–335 (2012). https://doi.org/10.1016/j.saa.2012.02.105

    Article  CAS  PubMed  Google Scholar 

  55. M. Chaabene, B. Gassoumi, P. Mignon, R. ben Chaâbane, A.R. Allouche, New zinc phthalocyanine derivatives for nitrogen dioxide sensors: a theoretical optoelectronic investigation. J. Mol. Graph. Model 88, 174–182 (2019). https://doi.org/10.1016/j.jmgm.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  56. R. Soury et al., Meso-tetrakis(3,4,5-trimethoxyphenyl)porphyrin derivatives: Synthesis, spectroscopic characterizations and adsorption of NO2. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122005

    Article  Google Scholar 

  57. U. Warde, N. Sekar, Fluorescent benzocoumarin-π-extended styryl hybrids: solvatochromism, excess dipole moment, NLO properties and DFT study. J. Fluoresc. 28(1), 293–309 (2018). https://doi.org/10.1007/s10895-017-2192-1

    Article  CAS  PubMed  Google Scholar 

  58. S. Badakhshan, S. Ahmadzadeh, A. Mohseni-Bandpei, M. Aghasi, A. Basiri, Potentiometric sensor for iron (III) quantitative determination: experimental and computational approaches. BMC Chem. (2019). https://doi.org/10.1186/s13065-019-0648-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. B. Gassoumi, H. Ghalla, R. ben Chaabane, Host-guest complexation studies of NO3, NO2, CO2, and N2 gas with the calix[4]arene molecule. J. Mol. Model (2020). https://doi.org/10.1007/s00894-020-04416-2

    Article  PubMed  Google Scholar 

  60. M. Chaabene et al., Spectroscopic characterization and binding interaction of heavy metal onto the surface receptor of the azobenzene: DFT and experimental approach. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130962

    Article  Google Scholar 

  61. O. Dagdag et al., Rheological, electrochemical, surface, DFT and molecular dynamics simulation studies on the anticorrosive properties of new epoxy monomer compound for steel in 1 M HCl solution. RSC Adv. 9(8), 4454–4462 (2019). https://doi.org/10.1039/c8ra09446b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Echabaane, A. Rouis, I. Bonnamour, H. ben Ouada, Studies of aluminum (III) ion-selective optical sensor based on a chromogenic calix[4]arene derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 269–274 (2013). https://doi.org/10.1016/J.SAA.2013.06.053

    Article  CAS  PubMed  Google Scholar 

  63. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. (2010). https://doi.org/10.1063/1.3382344

    Article  PubMed  Google Scholar 

  64. Y.A. Parr, B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  Google Scholar 

  65. A.D. Becke, Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  66. G. Chopra, N. Chopra, D. Kaur, Elucidating the intermolecular hydrogen bonding interaction of proline with amides—quantum chemical calculations. Struct. Chem. 30(3), 755–767 (2019). https://doi.org/10.1007/s11224-018-1235-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research was received from the Ministry of Higher Education and Scientific Research of Tunisia

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadhem Moulahi or Rafik Ben Chaabane.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulahi, N., Echabaane, M., Chaabene, M. et al. Impedimetric sensor for iron (III) detection based on small molecule (E)-2-((phenylimino)methyl) phenol-modified platinum electrode. J IRAN CHEM SOC 20, 1427–1438 (2023). https://doi.org/10.1007/s13738-023-02767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02767-0

Keywords

Navigation