Log in

Synthesis, crystal structure and alkaline pathways simulation of K3Na(Mo0.67Cr0.33O4)2 adopting glaserite structure-type

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new compound, K3Na(Mo0.67Cr0.33O4)2, had been synthesized using the flux method and characterized by single-crystal X-ray diffraction. The title compound could be considered as a new member of the Glaserite family. The crystal structure is built on (Mo/Cr)O4 tetrahedra sharing corners with NaO6 octahedra making a 2D formwork. The Mo6+ and Cr6+ cations are located at the same general site with occupancies of 0.67 and 0.37, respectively. The proposed structural model was supported by the bond valence sum and the charge distribution validation methods with suitable agreement factors. The experimental morphology of the single crystal determined by SEM technique and the simulated morphology from the crystallographic data have been reported. The simulation of the alkaline elements pathways migration by using the bond valence site energy model shows that the potassium atoms are blocked and only the sodium atoms can move. The estimated activation energy is about 1.45 eV. The crystal structure and the isosurfaces of migration of alkaline cations in crystal structure of the title compound and in the AIMIII(MoO4)2 (AI = alkaline; MIII = Fe3+, Cr3+, V3+, Al3+) compounds were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Souilem, M.F. Zid, A. Driss, β-Li0.37Na0.63Fe (MoO4)2. Acta Crystallogr. Sect. E Struct. Rep. Online 70, i9–i10 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Nasri, S.F. Chérif, M.F. Zid, Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94 (MoO4)5. Acta Crystallogr. Sect. E Crystallogr. Commun. 71, 388–391 (2015)

    Article  CAS  Google Scholar 

  3. I. Ennajeh, S. Georges, Y.B. Smida, A. Guesmi, M.F. Zid, H. Boughazala, Synthesis, crystal structure, sintering and electrical properties of a new alluaudite-like triple molybdate K0.13 Na3.87 MgMo3 O12. RSC Adv. 5, 38918–38925 (2015)

    Article  CAS  Google Scholar 

  4. C. Bouzidi, W. Frigui, M.F. Zid, Structure cristalline de type alluaudite KNa5Mn3 (MoO4)6. Acta Crystallogr. Sect. E Crystallogr. Commun. 71, 69–72 (2015)

    Article  CAS  Google Scholar 

  5. C. Bouzidi, W. Frigui, M.F. Zid, Synthèse et structure cristalline d’un matériau noir AgMnII3 (MnIII0 26Al0 74)(MoO4)5. Acta Crystallogr. Sect. E Crystallogr. Commun. 71, 299–304 (2015)

    Article  CAS  Google Scholar 

  6. R. Nasri, N. Fakhar Bourguiba, M.F. Zid, Structure cristalline de type alluaudite K0.4Na3.6Co (MoO4)3. Acta Crystallogr. Sect. E Crystallogr. Commun. 71, 4–7 (2015)

    Article  CAS  Google Scholar 

  7. M. Sonni, R. Marzouki, M.F. Zid, A. Souilem, Elaboration, étude structurale et analyse CHARDI et BVS d’une nouvelle variété β-Na9Cr (MoO4)6 de type alluaudite. Acta Crystallogr. Sect. E Crystallogr. Commun. 72, 833–837 (2016)

    Article  CAS  Google Scholar 

  8. I. Jendoubi, R.B. Smail, M. Maczka, M.F. Zid, Optical and electrical properties of the yavapaiite-like molybdate NaAl (MoO4)2. Ionics 24, 3515–3533 (2018)

    Article  CAS  Google Scholar 

  9. R. Nasri, R. Marzouki, S. Georges, S. Obbade, M.F. Zid, Synthesis, sintering, electrical properties, and sodium migration pathways of new lyonsite Na2Co2(MoO4)3. Turk. J. Chem. 42, 1251–1264 (2018)

    Article  CAS  Google Scholar 

  10. I. Jendoubi, M. Ptak, A. Pikul, J. Chmielowiec, A. Ciupa, M. Mączka, M.F. Zid, Synthesis, crystal structure, phonon, magnetic and electrical properties of new molybdate Na2Mn2 (MoO4)3. J. Solid State Chem. 277, 738–750 (2019)

    Article  CAS  Google Scholar 

  11. M. Sonni, M.F. Zid, K. Zaidat, C. Rossignol, S. Obbade, Na/Li substitution effect on the structural, electrical and magnetic properties of LiCr (MoO4)2 and β-Li0 87Na0 13Cr (MoO4)2. J. Alloys Compd. 854, 154740 (2021)

    Article  CAS  Google Scholar 

  12. C. Bai, C. Lei, S. Pan, Y. Wang, Z. Yang, S. Han, H. Yu, Y. Yang, F. Zhang, Syntheses, structures and characterizations of Rb3Na (MO4)2 (M = Mo, W) crystals. Solid State Sci. 33, 32–37 (2014)

    Article  CAS  Google Scholar 

  13. B. Bazarov, T. Namsaraeva, R. Klevtsova, A. Anshits, T. Vereshchagina, L. Glinskaya, K. Fedorov, Z.G. Bazarova, Growth and crystal structure of binary molybdate CsFe (MoO4)2. Crystallogr. Rep. 55, 591–593 (2010)

    Article  CAS  Google Scholar 

  14. J. Fábry, V. Petricek, P. Vanek, I. Cisarova, Phase transition in K3Na (MoO4)2 and determination of the twinned structures of K3Na (MoO4)2 and K2.5Na1.5 (MoO4)2 at room temperature. Acta Crystallogr. Sect. B Struct. Sci. 53, 596–603 (1997)

    Article  Google Scholar 

  15. E.S. Zolotova, Z.A. Solodovnikova, V.N. Yudin, S.F. Solodovnikov, E.G. Khaikina, O.M. Basovich, I.V. Korolkov, I.Y. Filatova, Phase relations in the Na2MoO4–Cs2MoO4 and Na2MoO4–Cs2MoO4–ZnMoO4 systems, crystal structures of Cs3Na (MoO4)2 and Cs3NaZn2 (MoO4)4. J. Solid State Chem. 233, 23–29 (2016)

    Article  CAS  Google Scholar 

  16. T. Inami, Neutron powder diffraction experiments on the layered triangular-lattice antiferromagnets RbFe (MoO4)2 and CsFe (SO4)2. J. Solid State Chem. 180, 2075–2079 (2007)

    Article  CAS  Google Scholar 

  17. P.E. Tomaszewski, A. Pietraszko, M. Maczka, J. Hanuza, CsAl (MoO4)2. Acta Crystallogr. Sect. E Struct. Rep. Online 58, i119–i120 (2002)

    Article  CAS  Google Scholar 

  18. R. Klevtsova, Z.G. Bazarova, L. Glinskaya, V. Alekseev, S. Arkhincheeva, B. Bazarov, P. Klevtsov, Crystal structure investigation of ternary molybdate K (Mg0.5Zr0.5) (MoO4)2. J. Struct. Chem. 36, 809–812 (1995)

    Article  Google Scholar 

  19. B. Gossner, XIII. Kaliumsulfat, Natrinmsulfat, Glaserit. Z Kristallogr Cryst Mater 39, 155–169 (1904)

    Article  Google Scholar 

  20. R. Nikolova, V. Kostov-Kytin, Crystal chemistry of “glaserite” type compounds. Bul. Chem. Commun. 45, 418–426 (2013)

    CAS  Google Scholar 

  21. M.S. Kumari, E.A. Secco II., Electrical conductivity and phase transition studies on pure and doped (Cd2+, Gd3+) KNaSO4 and K3Na (SO4)2. Canadian J. Chem. 61, 599–601 (1983)

    Article  CAS  Google Scholar 

  22. B. Dickens, W. Brown, G. Kruger, J. Stewart, Ca4 (PO4)2O tetracalcium diphosphate monoxide. Crystal structure and relationships to Ca5 (PO4)3OH and K3Na (SO4)2. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 29, 2046–2056 (1973)

    Article  CAS  Google Scholar 

  23. M.M. Kimani, L. Thompson, W. Snider, C.D. McMillen, J.W. Kolis, Hydrothermal synthesis and spectroscopic properties of a new glaserite material, K3RE (VO4)2 (RE = Sc, Y, Dy, Ho, Er, Yb, Lu, or Tm) with potential lasing and optical properties. Inorg. Chem. 51, 13271–13280 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. M. Vlasse, R. Salmon, C. Parent, Crystal structure of sodium lanthanum orthovanadate, Na3La (VO4)2. Inorgan. Chem. 15, 1440–1444 (1976)

    Article  CAS  Google Scholar 

  25. Y.B. Smida, R. Marzouki, S. Kaya, S. Erkan, M.F. Zid, A.H. Hamzaoui, Synthesis methods in solid-state chemistry, in Synthesis Methods and Crystallization, IntechOpen (2020)

  26. D. Abeysinghe, B. Gerke, G. Morrison, C.H. Hsieh, M.D. Smith, R. Pöttgen, T.M. Makris, H.-C.zur Loye, Synthesis, characterization, and properties of reduced europium molybdates and tungstates. J. Solid State Chem. 229, 173–180 (2015)

    Article  CAS  Google Scholar 

  27. A. Sarapulova, D. Mikhailova, A. Senyshyn, H. Ehrenberg, Crystal structure and magnetic properties of Li, Cr-containing molybdates Li3Cr (MoO4)3, LiCr (MoO4)2 and Li1.8Cr1.2 (MoO4)3. J. Solid State Chem. 182, 3262–3268 (2009)

    Article  CAS  Google Scholar 

  28. M. Mirzaei, M. Tahmasebi, J.T. Mague, A redetermination of the crystal structure of the mannitol complex NH4 [Mo2O5 (C6H11O6)] H2O: hydrogen-bonding scheme and hirshfeld surface analysis. Acta Crystallogr. Sect. E Crystallogr. Commun. 76, 518–522 (2020)

    Article  CAS  Google Scholar 

  29. M. Tamimi, M.M. Heravi, M. Mirzaei, V. Zadsirjan, N. Lotfian, H. Eshtiagh-Hosseini, Ag3 [PMo12O40]: An efficient and green catalyst for the synthesis of highly functionalized pyran-annulated heterocycles via multicomponent reaction. Appl. Organomet. Chem. 33, e5043 (2019)

    Article  Google Scholar 

  30. M. Tahmasebi, M. Mirzaei, H. Eshtiagh-Hosseini, J.T. Mague, A. Bauzá, A. Frontera, An inorganic–organic hybrid supramolecular framework based on the γ-[Mo8O26]4 cluster and cobalt complex of aspartic acid: X-ray structure and DFT study. Acta Crystallogr. Sect. C Struct. Chem. 75, 469–477 (2019)

    Article  CAS  Google Scholar 

  31. M. Jemmali, B. Marzougui, Y. Ben Smida, R. Marzouki, M. Triki, Polycrystalline powder synthesis methods, in Crystallization and Applications (IntechOpen, 2021), pp. 1–16

  32. R. Nasri, T. Larbi, H. Khemir, M. Amlouk, M.F. Zid, Synthesis, crystal structure and photocatalytic activity of a new NaLi1.07Co2.94 (MoO4)5 nanoparticles for real tannery wastewater treatment. J. Solid State Chem. 307, 122838 (2022)

    Article  CAS  Google Scholar 

  33. I. Jendoubi, M. Ptak, M.F. Zid, Optical properties and visible-light-driven photocatalytic activity of Na2Mn2 (MoO4)3. J. Solid State Chem. 300, 122245 (2021)

    Article  CAS  Google Scholar 

  34. Y. Ben Smida, R. Marzouki, S. Kaya, S. Erkan, M. F. Zid, A. H. Hamzaoui, Synthesis Methods in Solid State Chemistry, Synthesis Methods and Crystallization (IntechOpen, 2020), pp. 1–16

  35. W. Kaminsky, From CIF to virtual morphology using the WinXMorph program. J. Appl. Crystallogr. 40, 382–385 (2007)

    Article  CAS  Google Scholar 

  36. I.T. Brown, R.D. Shannon, Empirical bond–strength–bond–length curves for oxides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 29, 266–282 (1973)

    Article  CAS  Google Scholar 

  37. D. Altermatt, I. Brown, The automatic searching for chemical bonds in inorganic crystal structures. Acta Cryst. B Struct. Sci. 41, 240–244 (1985)

    Article  Google Scholar 

  38. J.-G. Eon, M. Nespolo, Charge distribution as a tool to investigate structural details. III Extension to description in terms of anion-centred polyhedra,. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 71, 34–47 (2015)

    Article  CAS  Google Scholar 

  39. M. Nespolo, B. Guillot, CHARDI2015: charge distribution analysis of non-molecular structures. J. Appl. Crystallogr. 49, 317–321 (2016)

    Article  CAS  Google Scholar 

  40. S. Adams, O. Moretzki, E. Canadell, Global instability index optimizations for the localization of mobile protons. Solid State Ionics 168, 281–290 (2004)

    Article  CAS  Google Scholar 

  41. Y.B. Smida, R. Marzouki, S. Georges, R. Kutteh, M. Avdeev, A. Guesmi, M.F. Zid, Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7 (AsO4)6. J. Solid State Chem. 239, 8–16 (2016)

    Article  Google Scholar 

  42. O.S. ALQarni, R. Marzouki, Y. Ben Smida, M.M. Alghamdi, M. Avdeev, R. Belhadj Tahar, M.F. Zid, Synthesis, electrical properties and Na+ migration pathways of Na2CuP1.5As0.5O7. Processes 8, 305 (2020)

    Article  CAS  Google Scholar 

  43. R. Marzouki, Y.B. Smida, M. Sonni, M. Avdeev, M.F. Zid, Synthesis, structure, electrical properties and Na+ migration pathways of Na2CoP1.5As0.5O7. J. Solid State Chem. 285, 121058 (2020)

    Article  CAS  Google Scholar 

  44. C. Falah, Y. Ben Smida, N. Sdiri, T. Soltani, Synthesis, single-crystal structure, dielectric properties of a new phosphate K3Bi6.5(PO4)7.5. Cryst. Res. Technol. 56, 2000228 (2021)

    Article  CAS  Google Scholar 

  45. C. Falah, Y.B. Smida, I. Ledoux-Rak, H. Boughzala, Synthesis, crystal structure and ionic conductivity of a new open-framework arsenate K0.405Bi0.865AsO4. J. Alloys Compd. 653, 321–326 (2015)

    Article  CAS  Google Scholar 

  46. N. Ouerfelli, Y.B. Smida, M.F. Zid, Synthesis, crystal structure and electrical properties of a new iron arsenate Na2.77K1.52Fe2.57 (AsO4)4. J. Alloys Compd. 651, 616–622 (2015)

    Article  CAS  Google Scholar 

  47. L. Pauling, The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929)

    Article  CAS  Google Scholar 

  48. I. Brown, VALENCE: a program for calculating bond valences. J. Appl. Crystallogr. 29, 479–480 (1996)

    Article  CAS  Google Scholar 

  49. I. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B 41, 244–247 (1985)

    Article  Google Scholar 

  50. S. Adams, J. Swenson, Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses. Phys. Chem. Chem. Phys. 4, 3179–3184 (2002)

    Article  CAS  Google Scholar 

  51. J. Swenson, S. Adams, Application of the bond valence method to reverse monte carlo produced structural models of superionic glasses. Phys. Rev. B 64, 024204 (2001)

    Article  Google Scholar 

  52. D. Mazza, Modeling ionic conductivity in nasicon structures. J. Solid State Chem. 156, 154–160 (2001)

    Article  CAS  Google Scholar 

  53. S. Adams, From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics 177, 1625–1630 (2006)

    Article  CAS  Google Scholar 

  54. S. Adams, Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics 136, 1351–1361 (2000)

    Article  Google Scholar 

  55. Y. Ben Smida, A. Guesmi, M.F. Zid, A. Driss, Na3Co2 (As0.52P0.48)O4 (As0.95P0.05)2O7,. Acta Crystallogr. Sect. E Struct. Rep. Online 69, i85–i86 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Y. Ben Smida, A. Guesmi, A. Driss, LiCo2As3O10 une nouvelle structure à tunnels interconnectés. Acta Crystallogr. Sect. E Struct. Rep. Online 69, i39–i39 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Adams, R.P. Rao, High power lithium ion battery materials by computational design. Physica Status Solidi (a) 208, 1746–1753 (2011)

    Article  CAS  Google Scholar 

  58. S. Adams, R.P. Rao, Ion transport and phase transition in Li7–x La3 (Zr2–x Mx)O12 (M= Ta5+, Nb5+, x= 0, 0.25). J. Mater. Chem. 22, 1426–1434 (2012)

    Article  CAS  Google Scholar 

  59. H. Chen, L.L. Wong, S. Adams, SoftBV–a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 18–33 (2019)

    Article  CAS  Google Scholar 

  60. Sheldrick, G.M, Acta Crystallographica Section A: Foundations of Crystallography 64(1), 112–122 (2008)

  61. L.J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012)

    Article  CAS  Google Scholar 

  62. G. Madariaga, T. Breczewski, Structure and phase transition of K3Na (CrO4)2,. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 46, 2019–2021 (1990)

    Article  Google Scholar 

  63. K. Lii, C. Wang, R. Chiang, S. Wang, The structure of CsV (MoO4)2. J. Solid State Chem. 80, 144–148 (1989)

    Article  CAS  Google Scholar 

  64. A.V.D. Lee, M. Beaurain, P. Armand, LiFe (MoO4)2, LiGa (MoO4)2 and Li3Ga (MoO4)3. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 64, i1–i4 (2008)

    Article  Google Scholar 

  65. R.F. Klevtsova, Crystal structure of NaFe (MoO4)2. Dokl. Akad. Nauk SSSR 221, 1322–1325 (1975)

    Google Scholar 

  66. R.F. Klevtsova, P.V. Klevtsov, Synthesis and crystal structure of double molybdates KR (MoO4)2 FOR R3+= A1, SC, and FE and tungstate KSC (WO4)2, in Soviet Physics Crystallography, USSR, 15 829-+ (1971)

  67. K. Hermanowicz, M. Mączka, P. Dereń, J. Hanuza, W. Stręk, H. Drulis, Optical properties of chromium (III) in trigonal KAl (MoO4)2 and monoclinic NaAl (MoO4)2 hosts. J. Luminesc. 92, 151–159 (2000)

    Article  CAS  Google Scholar 

  68. M.E. Poloznikova, O. Kondratov, N. Chaban, V. Safonov, V. Fomichev, Experimental and theoretical investigation of vibration spectrum of LiAl (MoO4)2. Zhurnal Neorganicheskoj Khimii 34, 655–659 (1989)

    CAS  Google Scholar 

  69. T. Krajewski, P. Piskunowicz, B. Mroz, Structural phase transitions in K3Na (SeO4)2 crystals. Physica Status Solidi (a) 135, 557–564 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.2/175/43. The authors thank the Tunisian Ministry of Higher Education and Scientific Research for the funding of this work within the framework of the laboratory program contract (LR16CNRSM02).

Funding

King Khalid University,Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Tunisie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Ben Smida.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dridi, W., Marzouki, A., Ben Smida, Y. et al. Synthesis, crystal structure and alkaline pathways simulation of K3Na(Mo0.67Cr0.33O4)2 adopting glaserite structure-type. J IRAN CHEM SOC 20, 751–761 (2023). https://doi.org/10.1007/s13738-022-02715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02715-4

Keywords

Navigation