Log in

Binding analysis of the curcumin-based synthetic alpha-glucosidase inhibitors to beta-lactoglobulin as potential vehicle carrier for antidiabetic drugs

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

β-Lactoglobulin (β-LG), the most important whey protein, has high capacity for binding many small hydrophobic molecules. The binding properties of β-LG in the presence of four different synthetic curcumin-based derivatives as potent inhibitors of intestinal α-glucosidase (α-Gls) were investigated. To study the binding properties both UV–vis and florescence spectroscopy were used accompanied by molecular modeling and simulation. The formed complex between curcumin and β-LG was investigated using spectroscopic techniques. The spectroscopic analyses results propose acceptable binding affinities between the curcumin derivatives and β-LG. Also, it was proved that the hydrophobic interactions play a noteworthy role in the protein–ligand binding. All of the curcumin inhibitors showed high affinity to β-LG based on the structural and thermodynamic analyses. Binding constant of complex formation (K) and thermodynamic parameters (ΔG°, ΔH° and ΔS°) of complex formation were calculated. The results suggested that the process was endothermic and entropy driven. Moreover, our results indicated that protein–ligand binding was spontaneous signifying the presence of static quenching between the two molecules. Our finding suggests the major role of hydrophobic effect in the interaction of the synthetic compounds and β-LG. Moreover, molecular docking analyses exposed that curcumin-based ligands bind with high affinity to the protein in a hydrophobic pocket which located on the protein surface. The stability of ligand–protein interaction was further confirmed by molecular dynamics simulation analysis. This study suggests β-LG as a good carrier for these potentially curcumin-based antidiabetic compounds to deliver safely through the stomach to small intestine which is the crucial site of their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

β-LG:

β-Lactoglobulin

ANS:

1-Anilinonaphthalene-8-Sulfonic acid

MVD:

Molegro Virtual Docker

PDB:

Protein data bank

CGenFF:

CHARMM general force field

GROMACS:

Groningen machine for chemical simulation

PME:

Particle mesh ewald

RMSD:

Rout mean square deviation

RMSF:

Root mean square fluctuation

References

  1. G. Kontopidis, C. Holt, L. Sawyer, The ligand-binding site of bovine β-lactoglobulin: evidence for a function. J. Mol. Biol. 318(4), 1043–1055 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. S. Brownlow, J.H. Morais Cabral, R. Cooper, D.R. Flower, S.J. Yewdall, I. Polikarpov, A.C.T. North, L. Sawyer, Bovine β-lactoglobulin at 18 Å resolution—still an enigmatic lipocalin. Structure 5(4), 481–495 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. K. Takagi, R. Teshima, H. Okunuki, J.I. Sawada, Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biol. Pharm. Bull. 26(7), 969–973 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. L. Liang, H. Tajmir-Riahi, M. Subirade, Interaction of β-lactoglobulin with resveratrol and its biological implications. Biomacromol 9(1), 50–56 (2007)

    Article  Google Scholar 

  5. L. Sawyer, G. Kontopidis, The core lipocalin, bovine β-lactoglobulin. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1482(1–2), 136–148 (2000)

    Article  CAS  Google Scholar 

  6. T. Lefèvre, M. Subirade, Conformational rearrangement of β-lactoglobulin upon interaction with an anionic membrane. Biochim. Biophys. (BBA) Protein Struct. Mol. Enzymol. 1549(1), 37–50 (2001)

    Article  Google Scholar 

  7. H.L. Monaco, G. Zanotti, P. Spadon, Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 Å resolution. J. Mol. Biol. 197(4), 695–706 (1987)

    Article  CAS  PubMed  Google Scholar 

  8. G. Kontopidis, C. Holt, L. Sawyer, Invited review: β-lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87(4), 785–796 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. M.H. Mehraban, R. Yousefi, A. Taheri-Kafrani, F. Panahi, A. Khalafi-Nezhad, Binding study of novel anti-diabetic pyrimidine fused heterocycles to β-lactoglobulin as a carrier protein. Colloids Surf. B 112, 374–379 (2013)

    Article  CAS  Google Scholar 

  10. P. Busti, C.A. Gatti, N.J. Delorenzi, Some aspects of β-lactoglobulin structural properties in solution studied by fluorescence quenching. Int. J. Biol. Macromol. 23(2), 143–148 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. A. Divsalar, A.A. Saboury, H. Mansoori-Torshizi, M. Islami Moghaddam, F. Ahmad, G.H. Hakimelahi, Comparative studies on the interaction between bovine β-lacto-globulin type a and B and a new designed Pd (II) complex with anti-tumor activity at different temperatures. J. Biomol. Struct. Dyn. 26(5), 587–597 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. A.K. Bordbar, N. Sohrabi, H. Gharibi, Binding set analysis for interaction of human serum albumin with cethyl trimethylammonium bromide. Bull. Korean Chem. Soc. 25(6), 791–795 (2004)

    Article  CAS  Google Scholar 

  13. B.R. Chandrika, J. Subramanian, S.D. Sharma, Managing protein flexibility in docking and its applications. Drug Discov. Today 14(7–8), 394–400 (2009)

    Google Scholar 

  14. L.J. Shai, P. Masoko, M.P. Mokgotho, S.R. Magano, A.M. Magale, N. Boaduo, J.N. Eloff, Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South Afr. J. Bot. 76(3), 465–470 (2010)

    Article  Google Scholar 

  15. V. Ghadyale, S.H. Takalikar, V. Haldavnekar, A. Arvindekar, Effective control of postprandial glucose level through inhibition of intestinal alpha glucosidase By Cymbopogon martinii (Roxb). Evid. Based Complement. Altern. Med. 2012, e372909 (2012)

    Article  Google Scholar 

  16. S.D. Kim, α-Gls inhibitor from Buthus martensi Karsch. Food Chem. 136(2), 297–300 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Liu, L. Ma, W. Chen, H. Park, Z. Ke, B. Wang, Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-Gls inhibitors: a theoretical and experimental study. J. Phys. Chem. B 117(43), 13464–13471 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. F. Panahi, R. Yousefi, M.H. Mehraban, A. Khalafi-Nezhad, Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic α-Gls inhibitors. Carbohydr. Res. 380, 81–91 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. V.P. Menon, A.R. Sudheer, Antioxidant and anti-inflammatory properties of curcumin. Mol. Targets Ther. Uses Curcumin Health Dis. 595, 105–125 (2007)

    Article  Google Scholar 

  20. H. Hatcher, R. Planalp, J. Cho, F.M. Torti, S.V. Torti, Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci. 65(11), 1631–1652 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R.A. Kowluru, M. Kanwar, Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr. Metab. 4(1), 8 (2007)

    Article  Google Scholar 

  22. A. Yousefi, R. Yousefi, F. Panahi, S. Sarikhani, A.R. Zolghadr, A. Bahaoddini, A. Khalafi-Nezhad, Novel curcumin-based pyrano [2, 3-d] pyrimidine anti-oxidant inhibitors for α-amylase and α-Gls: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol. 78, 46–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. A. Kumar, G. Das, B. Bose, Recombinant receptor-binding domain of diphtheria toxin increases the potency of curcumin by enhancing cellular uptake. Mol. Pharm. 11(1), 208–217 (2013)

    Article  PubMed  Google Scholar 

  24. S.C. Gupta, S. Prasad, J.H. Kim, S. Patchva, L.J. Webb, I.K. Priyadarsini, B.B. Aggarwal, Multitargeting by curcumin as revealed by molecular interaction studies. Natl. Prod. Rep. 28(12), 1937–1955 (2011)

    Article  CAS  Google Scholar 

  25. A.H. Sneharani, J.V. Karakkat, S.A. Singh, A.G. Appu Rao, Interaction of curcumin with β-lactoglobulin- stability, spectroscopic analysis, and molecular modeling of the complex. J. Agric. Food Chem. 58(20), 11130–11139 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. P. Mailliart, B. Ribadeau-Dumas, Preparation of β-lactoglobulin and p-lactoglobulin-free proteins from whey retentate by NaCI salting out at low pH. J. Food Sci. 53(3), 743–745 (1988)

    Article  CAS  Google Scholar 

  27. P. Bourassa, S. Dubeau, G.M. Maharvi, A.H. Fauq, T.J. Thomas, H.A. Tajmir-Riahi, Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin. Biochimie 93(7), 1089–1101 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. F. Mohammadi, A.K. Bordbar, A. Divsalar, K. Mohammadi, A.A. Saboury, Interaction of curcumin and diacetylcurcumin with the lipocalin member β-lactoglobulin. Protein J. 28(3–4), 117–123 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. G. Zhang, X. Chen, J. Guo, J. Wang, Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. J. Mol. Struct. 921(1–3), 346–351 (2009)

    Article  CAS  Google Scholar 

  30. Y.J. Hu, Y. Liu, J. Wang, X. **ao, S. Qu, Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36(4), 915–919 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. F. Ding, W. Liu, J.X. Diao, B. Yin, L. Zhang, Y. Sun, Complexation of insecticide chlorantraniliprole with human serum albumin: biophysical aspects. J. Lumin. 131(7), 1327–1335 (2011)

    Article  CAS  Google Scholar 

  32. K. Chen, T. Li, T. Cao, Tribe-PSO: a novel global optimization algorithm and its application in molecular docking. Chemom. Intell. Lab. Syst. 82(1–2), 248–259 (2006)

    Article  CAS  Google Scholar 

  33. M. Xu, M.A. Lill, Utilizing experimental data for reducing ensemble size in flexible-protein docking. J. Chem. Inf. Model. 52(1), 187–198 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  34. R. Dias, W. Filgueira, Jr. de Azevedo, Molecular docking algorithms. Curr. Drug Targets 9(12), 1040–1047 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. R. Thomsen, M.H. Christensen, MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49(11), 3315–3321 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4(1), 17 (2012)

    Article  CAS  Google Scholar 

  37. F. Keshavarz, D. Mohammad-Aghaie, Dual-target anticancer drug candidates: Rational design and simulation studies. Phys. Chem. Res. 3(2), 125–143 (2015)

    Google Scholar 

  38. E. Dufour, C. Genot, T. Haertlé, β-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1205(1), 105–112 (1994)

    Article  CAS  Google Scholar 

  39. K. Vanommeslaeghe, E.P. Raman, A.D. MacKerell Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52(12), 3155–3168 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Vanommeslaeghe, A.D. MacKerell Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom ty**. J. Chem. Inf. Model. 52(12), 3144–3154 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  42. J. Huang, A.D. MacKerell, CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34(25), 2135–2145 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. H.J. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  CAS  Google Scholar 

  44. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)

    Article  CAS  Google Scholar 

  45. T. Darden, D. York, L. Pedersen, Particle mesh ewald: an N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  CAS  Google Scholar 

  46. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997)

    Article  CAS  Google Scholar 

  47. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  CAS  Google Scholar 

  48. R.A. Laskowski, M.B. Swindells, LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51(10), 2778–2786 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. X. Daura, K. Gademann, B. Jaun, D. Seebach, W.F. Gunsteren, A.L. Mark, Peptide folding: when simulation meets experiment. Angew. Chem. Int. Ed. 38(1–2), 236–240 (1999)

    Article  CAS  Google Scholar 

  50. J.M. Bland, D.G. Altman, Applying the right statistics: analyses of measurement studies. Ultrasound Obstet. Gynecol. 22(1), 85–93 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. M.Z. Papiz, L. Sawyer, E.E. Eliopoulos, A.C.T. North, J.B.C. Findlay, R. Sivaprasadarao, T.A. Jones, M.E. Newcomer, P.J. Kraulis, The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324(6095), 383–385 (1986)

    Article  CAS  PubMed  Google Scholar 

  52. S. Le Maux, S. Bouhallab, L. Giblin, A. Brodkorb, T. Croguennec, Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Dairy Sci. Technol. 94(5), 409–426 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  53. M.C. Yang, H.H. Guan, M.Y. Liu, Y.H. Lin, J.M. Yang, W.L. Chen, C.J. Chen, S.J.T. Mao, Crystal structure of a secondary vitamin D3 binding site of milk β-lactoglobulin. Proteins Struct. Funct. Bioinf. 71(3), 1197–1210 (2008)

    Article  CAS  Google Scholar 

  54. S.-Y. Wu, M.D. Perez, P. Puyol, L. Sawyer, β-Lactoglobulin binds palmitate within its central cavity. J. Biol. Chem. 274(1), 170–174 (1999)

    Article  CAS  PubMed  Google Scholar 

  55. I. Hasni, P. Bourassa, H.A. Tajmir-Riahi, Binding of cationic lipids to milk β-lactoglobulin. J. Phys. Chem. B 115(20), 6683–6690 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the financial support of Shiraz University Research Council, Iran National Science foundation (INSF).

Funding

This work was supported by INSF (Grant number 960084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, A., Ahrari, S., Panahi, F. et al. Binding analysis of the curcumin-based synthetic alpha-glucosidase inhibitors to beta-lactoglobulin as potential vehicle carrier for antidiabetic drugs. J IRAN CHEM SOC 19, 489–503 (2022). https://doi.org/10.1007/s13738-021-02323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02323-8

Keywords

Navigation