Log in

Low-cost Zeolite/TiO2 composite for the photocatalytically enhanced adsorption of Cd2+ from aqueous solution

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nano-TiO2 (anatase) powders were immobilized on crystalline zeolite (size = 45 µm). The composite material was used for the rapid and efficient adsorption of the Cd2+ ions from an aqueous solution. Furthermore, the composites were exposed to two different calcination temperatures (500 and 700 °C) and were characterized by employing XRD, UV–Vis DRS, EDX, XRF, and pH point of zero charge analyses. Green synthesis, impregnation method was used to obtain zeolite-supported TiO2. The present study demonstrated that the photocatalytic maximum adsorption capacity of Cd2+ by zeolite-supported TiO2 (qm = 59.3 mg/g) was 3.7 times higher than that of bare TiO2 (qm = 16.2 mg/g). The percent removal efficiency of 99.6% was observed using zeolite-supported TiO2 composite under compact fluorescent light. Adsorption and kinetics studies were performed and the results obtained best fitted Langmuir adsorption isotherm and pseudo-second-order kinetics. As the wastewater containing different ionic strength, model dye Methylene Blue (MB) was used as competitive ions in the adsorption process. MB acted as photo-generated positive hole (h+) trapper and enhanced the Cd2+ removal efficiency (qm = 68.8 mg/g) further by reducing electron/hole pairs recombination rate. The easily separable composite showed high reusability by physical (high-temperature combustion) regeneration as compared to chemical (Fenton oxidation) regenerated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Mahdavi, Clean Technol. Environ. Policy 18, 817–827 (2016)

    Article  CAS  Google Scholar 

  2. S. Ashraf, Q. Ali, Z.A. Zahir, S. Ashraf, H.N. Asghar, Ecotoxicol. Environ. Safety 174, 714 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. U.S. EPA, Exposure Factors Handbook 2011 Edition (Final) (U.S Environmental Protection Agency, Washington, DC, 2011)

  4. M. Trgo, J. Perić, N.V. Medvidović, J. Hazard. Mater. 136, 938 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. M. Mohsen-Nia, P. Montazeri, H. Modarress, Desalination 217, 276 (2007)

    Article  CAS  Google Scholar 

  6. P. Pengthamkeerati, T. Satapanajaru, P. Chularuengoaksorn, Fuel 87, 2469 (2008)

    Article  CAS  Google Scholar 

  7. A.D. Delil, O. Gülçiçek, N. Gören, Int. J. Environ. Res. 13, 861 (2019)

    Article  Google Scholar 

  8. I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Bioresour. Technol. 99, 492 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33, 2469 (1999)

    Article  CAS  Google Scholar 

  10. M.R. Abukhadra, M. Shaban, F. Sayed, I. Saad, Environ. Sci. Pollut. Res 25, 33264 (2018)

    Article  CAS  Google Scholar 

  11. XXu.X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Environ. Sci. Pollut. Res 20, 358 (2013)

    Article  Google Scholar 

  12. L. Foo, C. Tee, N. Raimy, D. Hassell, L. Lee, Clean Technol. Environ. Policy 14, 273 (2012)

    Article  CAS  Google Scholar 

  13. M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout, M.E. El-Zaidy, J. Hazard. Mater. 374, 296 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. M. Visa, A. Duta, Chem. Eng. J. 223, 860 (2013)

    Article  CAS  Google Scholar 

  15. M. Abdel Salam, M.R. Abukhadra, A. Adlii, ACS omega 5, 2766 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N.U. Saqib, R. Adnan, I. Shah, Mater. Res. Exp. 6, 095506 (2019)

    Article  CAS  Google Scholar 

  17. G. Kravchenko, E. Domoroshchina, G. Kuzmicheva, A. Gaynanova, S. Amarantov, L. Pirutko, A. Tsybinsky, N. Sadovskaya, E. Kopylova, Nanotechnol. Russia 11, 579 (2016)

    Article  CAS  Google Scholar 

  18. X. Guo, S. Zhang, X.-Q. Shan, J. Hazard. Mater. 151, 134 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)

    Article  CAS  Google Scholar 

  20. V.N.H. Nguyen, R. Amal, D. Beydoun, Chem. Eng. Sci. 58, 4429 (2003)

    Article  CAS  Google Scholar 

  21. N.U. Saqib, A. Khan, I. Alam, M. Rahim, SN Appl. Sci. 2, 619 (2020)

    Article  CAS  Google Scholar 

  22. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res. 46, 369 (2007)

    Article  CAS  Google Scholar 

  23. L. Zhao, T. Cui, Y. Li, B. Wang, J. Han, L. Han, Z. Liu, RSC Adv. 5, 64495 (2015)

    Article  CAS  Google Scholar 

  24. G. Liu, D. Zhu, S. Liao, L. Ren, J. Cui, W. Zhou, J. Hazard. Mater. 172, 1424 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. S. Izadyar, S. Fatemi, Ind. Eng. Chem. Res. 52, 10961 (2013)

    Article  CAS  Google Scholar 

  26. M. Kumar, A.K. Gupta, D. Kumar, Ceram. Int. 42, 405 (2016)

    Article  CAS  Google Scholar 

  27. S. Wang, H. Li, S. **e, S. Liu, L. Xu, Chemosphere 65, 82 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. W. Zhang, X. **ao, L. Zheng, C. Wan, Appl. Surf. Sci. 358, 468 (2015)

    Article  CAS  Google Scholar 

  29. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003)

    Article  CAS  Google Scholar 

  30. S. Saha, J. Wang, A. Pal, Sep. Purif. Technol. 89, 147 (2012)

    Article  CAS  Google Scholar 

  31. E.M. Hotze, T. Phenrat, G.V. Lowry, J. Environ. Qual. 39, 1909 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. M. Samarghandi, J. Nouri, A. Mesdaghinia, A. Mahvi, S. Nasseri, F. Vaezi, Int. J. Environ. Sci. Technol. 4, 19 (2007)

    Article  CAS  Google Scholar 

  33. W. Janusz, M. Matysek, J. Colloid Interface Sci. 296, 22 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. L. Skubal, N. Meshkov, T. Rajh, M. Thurnauer, J. Photochem. Photobiol. A Chem. 148, 393 (2002)

    Article  CAS  Google Scholar 

  35. M. Zulfiqar, S. Sufian, N.E. Rabat, N. Mansor, J. Mol. Liquids 308, 112941 (2020)

    Article  CAS  Google Scholar 

  36. W. Cheung, Y. Szeto, G. McKay, Bioresour. Technol. 98, 2897 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. S. Sharaf El-Deen, F.-S. Zhang, J. Exp. Nanosci. 11, 239 (2016)

    Article  CAS  Google Scholar 

  38. R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 2, 13932 (2014)

    Article  CAS  Google Scholar 

  39. I. Shah, R. Adnan, W.S.W. Ngah, N. Mohamed, Y.H. Taufiq-Yap, Bioresour. Technol. 160, 52 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. M. Islam, R. Patel, J. Hazard. Mater. 143, 303 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. K.E. Engates, H.J. Shipley, Environ. Sci. Pollut. Res. 18, 386 (2011)

    Article  CAS  Google Scholar 

  42. E. Unuabonah, K. Adebowale, B. Olu-Owolabi, L. Yang, L. Kong, Hydrometallurgy 93, 1 (2008)

    Article  CAS  Google Scholar 

  43. Y.-C. Lee, J.-W. Yang, J. Ind. Eng. Chem. 18, 1178 (2012)

    Article  CAS  Google Scholar 

  44. E. Giarratano, M. Faleschini, C. Bruni, N.L. Olivera, M.N. Gil, Int. J. Environ. Res. 13, 581 (2019)

    Article  CAS  Google Scholar 

  45. J.H. Roque-Ruiz, E.A. Cabrera-Ontiveros, J. Torres-Pérez, S.Y. Reyes-López, Water Air Soil Pollut. 227, 286 (2016)

    Article  Google Scholar 

  46. A. Usman, A. Sallam, M. Zhang, M. Vithanage, M. Ahmad, A. Al-Farraj, Y.S. Ok, A. Abduljabbar, M. Al-Wabel, Water Air Soil Pollut. 227, 449 (2016)

    Article  Google Scholar 

  47. S. Hashimoto, J. Photochem. Photobiol. C 4, 19 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the grant RUI No. 1001/PKIMIA/815099 for the equipment and financial funding by Universiti Sains Malaysia (USM). Furthermore, N. S. is also grateful to TWAS (The World Academy of Sciences) & USM for granting TWAS–USM Fellowship to tail this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najm Us Saqib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saqib, N.U., Adnan, R., Rahim, M. et al. Low-cost Zeolite/TiO2 composite for the photocatalytically enhanced adsorption of Cd2+ from aqueous solution. J IRAN CHEM SOC 18, 2165–2180 (2021). https://doi.org/10.1007/s13738-021-02179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02179-y

Keywords

Navigation