Log in

Modification of fly ash cenospheres by 3-glycidyloxypropyl trimethoxysilane (GPTMS) for anticorrosive coating applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The present work focused on the functionalization of fly ash cenospheres (FACs) by GPTMS for anticorrosive applications. FACs are an industrial waste product from coal industry that possesses valuable properties such as lightweight, low water absorption, corrosion resistance, and chemical inertness. Epoxy is one of the best materials for superior corrosion performance and excellent substrate adhesion and therefore was chosen as the base matrix. 3-Glycidyloxypropyl trimethoxysilane (GPTMS) was selected as the suitable silane functionalization agent (with the variation of 2, 4, and 6 wt% of cenospheres due to its compatibility with epoxy resin). GPTMS can help corrosion control by forming dense Si–O–Si networks that act as a protective barrier against water, aggressive ions, etc. FTIR and XRD analyses studied the primary structural confirmation of silane-modified cenosphere, while the morphology was studied by SEM analysis. TGA and DTG curves investigated the thermal properties of the coatings, while EIS studies evaluated the anticorrosive attributes. The EIS results showed that the corrosion rate decreased as the percentage of silane increased in the coating, which indicates the superior anticorrosion behaviour of the 6 GPTMS FAC–epoxy sample compared to others.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

The authors do not have the permission to share the data.

References

  1. Xavier JR (2021) Improvement of mechanical and anticorrosion coating properties in conducting polymer poly(propyl methacrylate) embedded with silane functionalized silica nanoparticles. SILICON 13:3291–3305. https://doi.org/10.1007/s12633-020-00679-9

    Article  CAS  Google Scholar 

  2. Ranjbar N, Kuenzel C (2017) Cenospheres: a review. Fuel 207:1–12

    Article  CAS  Google Scholar 

  3. Zanjad N, Pawar S, Nayak C (2022) Use of fly ash cenosphere in the construction Industry: a review. Mater Today Proc 62:2185–2190. https://doi.org/10.1016/j.matpr.2022.03.362

    Article  CAS  Google Scholar 

  4. Adesina A (2020) Sustainable application of cenospheres in cementitious materials – Overview of performance. Dev Built Environ 4:100029. https://doi.org/10.1016/j.dibe.2020.100029

    Article  Google Scholar 

  5. Hanif A, Lu Z, Li Z (2017) Utilization of fly ash cenosphere as lightweight filler in cement-based composites – a review. Constr Build Mater 144:373–384. https://doi.org/10.1016/j.conbuildmat.2017.03.188

    Article  CAS  Google Scholar 

  6. Danish A, Mosaberpanah MA (2020) Formation mechanism and applications of cenospheres: a review. J Mater Sci 55:4539–4557. https://doi.org/10.1007/s10853-019-04341-7

    Article  CAS  Google Scholar 

  7. Siyanbola TO, Adebowale AD, Adeboye SA, Rao SJV, Ndukwe NA, Sodiya EF, Ajayi AA, Akintayo ET, Basak P, Narayan R (2023) Development of functional polyurethane-cenosphere hybrid composite coatings from ricinus communis seed oil. Sci Afr 20:e01711. https://doi.org/10.1016/j.sciaf.2023.e01711

    Article  CAS  Google Scholar 

  8. Pratheesh K, Narayanasamy P, Prithivirajan R, Ramkumar T, Balasundar P, Indran S, Sanjay MR, Siengchin S (2023) Cenosphere filled epoxy composites: structural, mechanical, and dynamic mechanical studies. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04154-4

    Article  Google Scholar 

  9. Shahapurkar K, Doddamani M, Kumar GCM, Gupta N (2019) Effect of cenosphere filler surface treatment on the erosion behavior of epoxy matrix syntactic foams. Polym Compos 40:2109–2118. https://doi.org/10.1002/pc.24994

    Article  CAS  Google Scholar 

  10. Nakonieczny DS, Antonowicz M, Heim T, Swinarew AS, Nuckowski P, Matus K, Lemanowicz M (2022) Cenospheres-reinforced PA-12 composite: preparation, physicochemical properties, and soaking tests. Polymers (Basel) 14:2332. https://doi.org/10.3390/polym14122332

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso RJ, Shukla A, Bose A (2002) Effect of particle size and surface treatment on constitutive properties of polyester–cenosphere composites. J Mater Sci 37:603–613. https://doi.org/10.1023/A:1013781927227

    Article  CAS  Google Scholar 

  12. Li J, Chen P, Wang Y, Wang G (2021) Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes. Prog Org Coatings 158:106388. https://doi.org/10.1016/j.porgcoat.2021.106388

    Article  CAS  Google Scholar 

  13. Kumar VR, Rao CRP, Poornachandra SR (2018) Corrosion and wear Studies on LM6 grade aluminum-cenosphere composite-an experimental approach. Mater Today Proc 5:11667–11677. https://doi.org/10.1016/j.matpr.2018.02.136

    Article  CAS  Google Scholar 

  14. Zhang C, Huang KC, Wang H, Zhou Q (2020) Anti-corrosion non-isocyanate polyurethane polysiloxane organic/inorganic hybrid coatings. Prog Org Coatings 148:105855. https://doi.org/10.1016/j.porgcoat.2020.105855

    Article  CAS  Google Scholar 

  15. Bouibed A, Doufnoune R (2019) Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings. J Adhes Sci Technol 33:834–860. https://doi.org/10.1080/01694243.2019.1571660

    Article  CAS  Google Scholar 

  16. Bagherzadeh MR, Daneshvar A, Shariatpanahi H (2012) Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel. Surf Coatings Technol 206:2057–2063. https://doi.org/10.1016/j.surfcoat.2011.05.036

    Article  CAS  Google Scholar 

  17. Pape PG (2017) Adhesion Promoters: Silane Coupling Agents, 2nd edn. Elsevier Inc

    Google Scholar 

  18. Hadavand BS, Jouyandeh M, Paran SMR, Khalili R, Vahabi H, Fakharizadeh Bafghi H, Laoutid F, Vijayan PP, Saeb, (2020) Silane-functionalized Al2O3-modified polyurethane powder coatings : nonisothermal degradation kinetics and mechanistic insights. J Appl Polym Sci 137:e49412. https://doi.org/10.1002/app.49412

    Article  CAS  Google Scholar 

  19. Souza KGS, Cotting F, Aoki IV, Amado FDR, Capelossi VR (2020) Study of the wettability and the corrosion protection of the hybrid silane (3-aminopropyl) triethoxysilane (aptes) and (3-glycidyloxypropyl) trimethoxysilane (GPTMS) film on galvannealed steel. Rev Mater 25:12663. https://doi.org/10.1590/S1517-707620200002.1063

    Article  Google Scholar 

  20. Eftekharipour F, Jamshidi M, Ghamarpoor R (2023) Fabricating core-shell of silane modified nano ZnO; effects on photocatalytic degradation of benzene in air using acrylic nanocomposite. Alex Eng J 70:273–288. https://doi.org/10.1016/j.aej.2023.02.047

    Article  Google Scholar 

  21. Ghamarpoor R, Jamshidi M, Mohammadpour M (2023) Achieving outstanding mechanical/bonding performances by epoxy nanocomposite as concrete–steel rebar adhesive using silane modification of nano SiO2. Sci Rep 13:9157. https://doi.org/10.1038/s41598-023-36462-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sayyadian M, Jamshidi M, Ghamarpoor R, Razavizadeh M (2023) Silanization of functionalized PET fabric to improve PET-nitrile rubber (NBR) adhesion; effects of functionalization type and silane concentration. Arab J Chem 16:105098. https://doi.org/10.1016/j.arabjc.2023.105098

    Article  CAS  Google Scholar 

  23. Baghitabar K, Jamshidi M, Ghamarpoor R (2023) Exfoliation, hydroxylation and silanization of two-dimensional (2D) montmorillonites (MMTs) and evaluation of the effects on tire rubber properties. Polym Test 129:108265. https://doi.org/10.1016/j.polymertesting.2023.108265

    Article  CAS  Google Scholar 

  24. Trovato V, Colleoni C, Castellano A, Plutino MR (2018) The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring. J Sol-Gel Sci Technol 87:27–40. https://doi.org/10.1007/s10971-018-4695-x

    Article  CAS  Google Scholar 

  25. Zeng D, Liu Z, Zou L, Wu H (2021) Corrosion resistance of epoxy coatings modified by bis-silane prepolymer on aluminum alloy. Coatings 11:842. https://doi.org/10.3390/coatings11070842

    Article  CAS  Google Scholar 

  26. Parhizkar N, Ramezanzadeh B, Shahrabi T (2018) Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl Surf Sci 439:45–59. https://doi.org/10.1016/j.apsusc.2017.12.240

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhao M, Zhang J, Shao Q, Ji J, Li H, Lin B, Yu M, Chen S, Guo Z (2018) Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. J Polym Res 25:130. https://doi.org/10.1007/s10965-018-1518-2

    Article  CAS  Google Scholar 

  28. Goyat MS, Hooda A, Gupta TK, Kumar K, Hadler S, Ghosh PK, Dehiya BS (2021) Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites. Ceram Int 47:22316–22344. https://doi.org/10.1016/j.ceramint.2021.05.083

    Article  CAS  Google Scholar 

  29. Upadhyay AK, Goyat MS, Kumar A (2022) A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites. J Mater Sci 57:13202–13232. https://doi.org/10.1007/s10853-022-07496-y

    Article  CAS  Google Scholar 

  30. Sharma K, Malik MK, Chawla A, Das S, Ahlawat DS, Goyat MS (2023) Development of corrosion-resistant superhydrophobic coating on brass using modified silica nanoparticles. J Sol-Gel Sci Technol 105:701–708. https://doi.org/10.1007/s10971-022-06018-1

    Article  CAS  Google Scholar 

  31. Sharma V, Goyat MS, Hooda A, Pandy JK, Kumar A, Gupta R, Upadhyay AK, Prakash R, Kirabira JB, Mandal R, Bhargav PK (2020) Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: a critical review. Prog Org Coatings 140:105512. https://doi.org/10.1016/j.porgcoat.2019.105512

    Article  CAS  Google Scholar 

  32. Hooda A, Goyat MS, Pandey JK, Kumar A, Gupta R (2020) A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Org Coatings 142:105557. https://doi.org/10.1016/j.porgcoat.2020.105557

    Article  CAS  Google Scholar 

  33. Ghamarpoor R, Jamshidi M, Fallah A, Eftekharipour F (2023) Preparation of dual-use GPTES@ZnO photocatalyst from waste warm filter cake and evaluation of its synergic photocatalytic degradation for air-water purification. J Environ Manage 342:118352. https://doi.org/10.1016/j.jenvman.2023.118352

    Article  CAS  PubMed  Google Scholar 

  34. Swarna PSK, Ghosh AK (2018) Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG. J Nanoparticle Res 20:53. https://doi.org/10.1007/s11051-017-4121-2

    Article  CAS  Google Scholar 

  35. Chandane VS, Rathod AP, Wasewar KL, Sonawane SS (2017) Synthesis of cenosphere supported heterogeneous catalyst and its performance in esterification reaction. Chem Eng Commun 205:238–248. https://doi.org/10.1080/00986445.2017.1384922

    Article  CAS  Google Scholar 

  36. Li JC, Zheng L-F, Sha X-H, Chen P (2020) Microstructural and mechanical characteristics of graphene oxide-fly ash cenosphere hybrid reinforced epoxy resin composites. J Appl Polym Sci 137:47173. https://doi.org/10.1002/app.47173

    Article  CAS  Google Scholar 

  37. Dharmalingam U, Dhanasekaran M, Balasubramanian K, Kandasamy R (2015) Surface treated fly ash filled modified epoxy composites. Polimeros 25:540–546. https://doi.org/10.1590/0104-1428.2152

    Article  CAS  Google Scholar 

  38. Garibay-Martínez F, Rao MGS, Cortázar-Martínez O, Hurtado-Macías A, Quevedo-López MA, Ramírez-Bon R (2021) Optical, mechanical and dielectric properties of sol-gel PMMA-GPTMS-ZrO2 hybrid thin films with variable GPTMS content. J Non Cryst Solids 563:120803. https://doi.org/10.1016/j.jnoncrysol.2021.120803

    Article  CAS  Google Scholar 

  39. Zyrkowski M, Neto RC, Santos LF, Witkowski K (2016) Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 174:49–53. https://doi.org/10.1016/j.fuel.2016.01.061

    Article  CAS  Google Scholar 

  40. Satpathy HP, Patel SK, Nayak AN (2019) Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater 202:636–655. https://doi.org/10.1016/j.conbuildmat.2019.01.034

    Article  Google Scholar 

  41. Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Crystallinity and selected properties of fly ash particles. Mater Sci Eng A 325:333–343. https://doi.org/10.1016/S0921-5093(01)01466-6

    Article  Google Scholar 

  42. Khoshnoud P, Abu-Zahra N (2015) Effect of cenosphere fly ash on the thermal, mechanical, and morphological properties of rigid PVC foam composites. J Res Updat Polym Sci 4:1–14. https://doi.org/10.6000/1929-5995.2015.04.01.1

    Article  CAS  Google Scholar 

  43. Sarkar A, Rano R, Mishra KK, Mazumder A (2008) Characterization of cenospheres collected from ash-pond of a super thermal power plant. Energy Sources, Part A Recovery Util Environ Eff 30:271–283. https://doi.org/10.1080/00908310600713883

    Article  CAS  Google Scholar 

  44. Choo TF, Salleh MAM, Kok KY, Matori KA, AbdullRashid S (2020) Effect of temperature on morphology, phase transformations and thermal expansions of coal fly ash cenospheres. Crystals 10:481. https://doi.org/10.3390/cryst10060481

    Article  CAS  Google Scholar 

  45. Scaccia S, Vanga G, Gattia DM, Stendardo S (2019) Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium loo** process. J Alloys Compd 801:123–129. https://doi.org/10.1016/j.jallcom.2019.06.064

    Article  CAS  Google Scholar 

  46. Dun Y, Zuo Y (2017) Preparation and characterization of a GPTMS/graphene coating on AA-2024 alloy. Appl Surf Sci 416:492–502. https://doi.org/10.1016/j.apsusc.2017.04.116

    Article  CAS  Google Scholar 

  47. Asgharian Z, Eshaghi A, Ramazani M, Kiomarsipour N (2023) Preparation of transparent hard GPTMS-Al2O3 thin films on a polycarbonate substrate. Heliyon 9:e21569. https://doi.org/10.1016/j.heliyon.2023.e21569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Yu Q, Yu M, Li S, Zhao K, Xue B, Zu H (2018) Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024. J Alloys Compd 744:728–739. https://doi.org/10.1016/j.jallcom.2018.01.267

    Article  CAS  Google Scholar 

  49. Pathak SS, Khanna AS (2008) Synthesis and performance evaluation of environmentally compliant epoxysilane coatings for aluminum alloy. Prog Org Coatings 62:409–416. https://doi.org/10.1016/j.porgcoat.2008.02.008

    Article  CAS  Google Scholar 

  50. Li J, Bai H, Feng Z (2023) Advances in the modification of silane-based sol-gel coating to improve the corrosion resistance of magnesium alloys. Molecules 28:2563. https://doi.org/10.3390/molecules28062563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Saadi S, Singh Raman RK (2022) Silane coatings for corrosion and microbiologically influenced corrosion resistance of mild steel: a review. Materials (Basel) 15:7809. https://doi.org/10.3390/ma15217809

    Article  CAS  PubMed  Google Scholar 

  52. Patel M, Mestry S, Phalak G, Mhaske S (2020) Novel catechol-derived phosphorus-based precursors for coating applications. Polym Bull 77:2183–2203. https://doi.org/10.1007/s00289-019-02855-3

    Article  CAS  Google Scholar 

  53. Kuang Y, Jiang F, Zhu T, Wu H, Yang X, Li S, Hu C (2021) One-step electrodeposition of superhydrophobic copper coating from ionic liquid. Mater Lett 303:130579. https://doi.org/10.1016/j.matlet.2021.130579

    Article  CAS  Google Scholar 

  54. Chen H, Fan H, Su N, Hong R, Lu X (2021) Highly hydrophobic polyaniline nanoparticles for anti-corrosion epoxy coatings. Chem Eng J 420:130540. https://doi.org/10.1016/j.cej.2021.130540

    Article  CAS  Google Scholar 

  55. Li H, Zhang C, Liu C, Huang M (2019) Improvement in corrosion resistance of CrN coatings. Surf Coatings Technol 365:158–163. https://doi.org/10.1016/j.surfcoat.2018.07.018

    Article  CAS  Google Scholar 

  56. Tanirbergenova SK, Dinistanova BK, Zhylybayeva NK, Tugelbayeva DA, Moldazhanova GM, Aitugan A, Taju K, Nazhipkyzy M (2023) Synthesis of cenospheres from ash and their application. J Compos Sci 7:276. https://doi.org/10.3390/jcs7070276

    Article  CAS  Google Scholar 

  57. Sathishkumar GK, Gautham G, Shankar GG, Rajkumar G, Karpagam R, Dhivya V, Zacharia G, Gopinath B, Karthik P, Charles MM (2022) Influence of lignite fly ash on the structural and mechanical properties of banana fiber containing epoxy polymer matrix composite. Polym Bull 79:285–306. https://doi.org/10.1007/s00289-020-03524-6

    Article  CAS  Google Scholar 

  58. Ou X, Lu X, Chen S, Lu Q (2020) Thermal conductive hybrid polyimide with ultrahigh heat resistance, excellent mechanical properties and low coefficient of thermal expansion. Eur Polym J 122:109368. https://doi.org/10.1016/j.eurpolymj.2019.109368

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogje, M., Mestry, S., Mohanty, J.D. et al. Modification of fly ash cenospheres by 3-glycidyloxypropyl trimethoxysilane (GPTMS) for anticorrosive coating applications. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01359-w

Keywords

Navigation