Log in

The chemical diversity and biological activities of phytoalexins

  • Review
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. They take part in an intricate defense system which enables plants to control invading microorganisms. Phytoalexins are only one component of the complex mechanisms for disease resistance in plants, but display a wide range of activities that promote the health of humans. In this review the chemical structures of phytoalexins, the role they play in protecting plants from microbial infection and their application in promoting human health in general are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

3-DOA:

3-Deoxyanthocyanins

ERs:

Estrogen receptors

GSH:

Glutathione

LDL:

Low density lipoprotein

ROS:

Reactive oxygen species

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    Article  CAS  PubMed  Google Scholar 

  • Armero J, Requejo R, Jorrín J, López-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 39(9):785–795

    Article  CAS  Google Scholar 

  • Arruda RL, Paz ATS, Bara MTF, Côrtes MVDCB, Filippi MCCD, Conceição ECD (2016) An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Ciência Rural 46(7):1206–1216

    Article  CAS  Google Scholar 

  • Bamji SF, Corbitt C (2017) Glyceollins: Soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods 34:98–105

    Article  CAS  Google Scholar 

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41(5):333–349

    Article  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, Reboutier D, Madiona K, Pennarun AM, Monestiez M, Trouverie J, Amiar Z, Briand J, Brault M (2006) Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol 169(1):209–218

    Article  CAS  PubMed  Google Scholar 

  • Burow ME, Boue SM, Collins-Burow BM, Melnik LI, Duong BN, Carter-Wientjes CH, Li S, Wiese TE, Cleveland TE, McLachlan JA (2001) Phytochemical glyceollins, isolated from soy, mediate antihormonal effects through estrogen receptor α and β. J Clin Endocrinol Metab 86(4):1750–1758

    CAS  PubMed  Google Scholar 

  • Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16(12):29120–29133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chripkova M, Zigo F, Mojzis J (2016) Antiproliferative effect of indole phytoalexins. Molecules 21(12):1626

    Article  PubMed Central  CAS  Google Scholar 

  • Cruickshank IAM, Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 187(4739):799–800

    Article  CAS  PubMed  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors—a defense against microbial infection in plants. Ann Rev Plant Physiol 35(1):243–275

    Article  CAS  Google Scholar 

  • Ejike CE, Gong M, Udenigwe CC (2013) Phytoalexins from the Poaceae: biosynthesis, function and prospects in food preservation. Food Res Int 52(1):167–177

    Article  CAS  Google Scholar 

  • ElAttar TM, Virji AS (1999) Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation. Anticancer Drugs 10(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, Mas-Bargues C, Abdelaziz KM, Gomez-Cabrera MC, Vina J, Borras C (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longevity 2015:1–13

    Article  Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S, Okada K, Yamane H, Iwai T, Ohashi Y (2014) Analysis on blast fungus-responsive characters of a flavonoid phytolaexin sakuratin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules 19(8):11404–11418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh TC, Wu JM (1999) Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 249(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P (2015) Phytoalexins: current progress and future prospects. Molecules 20:2770–2774

    Article  CAS  PubMed Central  Google Scholar 

  • Jeandet P, Bessis R, Sbaghi M, Meunier P (1995) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J Phytopathol 143(3):135–139

    Article  CAS  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Clément C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 14(7):14136–14170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeandet P, Hébrard C, Deville MA, Cordelier S, Dorey S, Aziz A, Crouzet J (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19(11):18033–18056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kello M, Drutovic D, Chripkova M, Pilatova M, Budovska M, Kulikova L, Urdzik P, Mojzis J (2014) ROS-dependent antiproliferative effect of brassinin derivative homobrassinin in human colorectal cancer CaCo2 cells. Molecules 19(8):10877–10897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein AP, Sattely ES (2017) Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc Natl Acad Sci 114(8):1910–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86

    Article  CAS  Google Scholar 

  • Long M, Barton-Willis P, Staskawicz BJ, Dahlbeck D, Keen NT (1985) Further studies on the relationship between glyceollin accumulation and the resistance of soybean leaves to Pseudomonas syringae pv. Glycinea. Phytopathology 75:235–239

    Article  CAS  Google Scholar 

  • Marley PS, Hillocks RJ (1993) The role of phytoalexins in resistance to fusarium wilt in pigeon pea (Cajanus cajan). Plant Pathol 42(2):212–218

    Article  CAS  Google Scholar 

  • McCalley A, Kaja S, Payne A, Koulen P (2014) Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 19(6):7327–7340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller KO (1940) Experimentelle untcrsuchungcn uber die Phytophthora-resistem der kartoffel. Reichsasnstalt Landw Forstw Berlin Arb Biol 23:189–231

    Google Scholar 

  • Okada K (2011) The biosynthesis of isoprenoids and mechanisms regulating it in plants. Biosci Biotechnol Biochem 75(7):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Park H, Yoo Y, Hahn TR, Bhoo S, Lee SW, Cho MH (2014) Antimicrobial activity of UV-induced phenylamides from rice leaves. Molecules 19(11):18139–18151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedras MSC, Yaya EE (2010) Phytoalexins from Brassicaceae: news from the front. Phytochemistry 71(11–12):1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Montaut S, Suchy M (2004) Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity. J Organ Chem 69(13):4471–4476

    Article  CAS  Google Scholar 

  • Poloni A, Schirawski J (2014) Red card for pathogens: phytoalexins in sorghum and maize. Molecules 19(7):9114–9133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Preisig CL, Bell JN, Sun Y, Hrazdina G, Matthews DE, VanEtten HD (1990) Biosynthesis of the phytoalexin pisatin: isoflavone reduction and further metabolism of the product sophorol by extracts of Pisum sativum. Plant Physiol 94(3):1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci 108(13):5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith B, Randle D, Mezencev R, Thomas L, Hinton C, Odero-Marah V (2014) Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D. Molecules 19(4):3988–4005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sobolev VS (2013) Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. J Agric Food Chem 61(8):1850–1858

    Article  CAS  PubMed  Google Scholar 

  • Takasugi M, Katsui N, Shirata A (1986) Isolation of three novel sulphur-containing phytoalexins from the chinese cabbage Brassica campestris L. ssp. pekinensis (cruciferae). J Chem Soc Chem Commun 14:1077–1078

    Article  Google Scholar 

  • Tay KC, Tan LTH, Chan CK, Hong SL, Chan KG, Yap WH, Pusparajah P, Lee LH, Goh BH (2019) Formononetin: a review of its anticancer potentials and mechanisms. Front Pharmacol 10:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessitore L, Davit A, Sarotto I, Caderni G (2000) Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21 CIP expression. Carcinogenesis 21(8):1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C (2016) Gossypol: phytoalexin of cotton. Sci China Life Sci 59(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Veshkurova O, Golubenko Z, Pshenichnov E, Arzanova I, Uzbekov V, Sultanova E, Salikhov S, Williams HJ, Reibenspies JH, Puckhaber LS, Stipanovic RD (2006) Malvone A, a phytoalexin found in Malva sylvestris (family Malvaceae). Phytochemistry 67(21):2376–2379

    Article  CAS  PubMed  Google Scholar 

  • Weiergang I, Hipskind JD, Nicholson RL (1996) Synthesis of 3-deoxyanthocyanidin phytoalexins in sorghum occurs independent of light. Physiol Mol Plant Pathol 49(6):377–388

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Browning JD, Awika JM (2009) Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J Agric Food Chem 57(5):1797–1804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Kaleab Asres for his invaluable comments and encouragements to make this paper adequate. The author did not receive any funding from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizachew Kassahun Bizuneh.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Gizachew Kassahun Bizuneh has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizuneh, G.K. The chemical diversity and biological activities of phytoalexins. ADV TRADIT MED (ADTM) 21, 31–43 (2021). https://doi.org/10.1007/s13596-020-00442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-020-00442-w

Keywords

Navigation