Log in

Stockless organic farming: strengths and weaknesses evidenced by a multicriteria sustainability assessment model

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Agronomists need methodologies to assess the sustainability of crop** systems. Few models such as MASC have been recently developed for evaluation. The effective use of those models is still a challenge, notably for low-input systems. Here a more specific model entitled MASC-OF was developed and applied to study stockless organic crop** systems. The MASC-OF model is original because it is based on agricultural advisers’ needs and expertises. Two groups of advisers supported by agronomic scientists were involved in a nine-step methodology to progress from preliminary meetings to data analysis. The methodology allowed advisers to design a model including their own views on what is a sustainable organic crop** system. Soil fertility and weed and pest control were integrated as a new branch in the original MASC model. We also developed evaluation criteria for each basic attribute, defining aggregation rules and weighting attributes. Tested case studies were based on 44 real crop** systems identified on 19 farms in the Midi-Pyrenees region of France and on 23 crop** system types developed by the advisers from the Centre, Ile-de-France, Pays de Loire, Poitou-Charentes and Rhône-Alpes regions of France. Our results show that a high score of economic sustainability is the most difficult to achieve. This finding is explained by low productivity of cereal crops and high variability of market prices for organic grain. Further, agronomic viability is also difficult to ensure, as a consequence of poor soil-fertility management practices. The ability to achieve social acceptability for the producer, including workload and health risk, is high. By contrast, acceptability for the society has a medium score due to reduced productivity and contribution to local employment. Environmental sustainability is the easiest dimension to achieve, despite nitrogen-loss risks in some situations and high water and energy consumption in irrigated systems. Overall our findings show that the potential for the development of more sustainable organic crop** systems in stockless farms is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agence bio (2012) L’agriculture biologique française: les chiffres clés—Edition 2012. La Documentation française

  • Andreoli M, Rossi R, Tellarini V (1999) Farm sustainability assessment: some procedural issues. Landsc Urban Plan 46:41–50. doi:10.1016/S0169-2046(99)00045-6

    Article  Google Scholar 

  • Aouadi N (2011) DE**PM-vigne: un outil d’évaluation multicritère de stratégies phytosanitaires en viticulture. Master of Science n 115, CIHEAM-IAMM Publications

  • Bachinger J, Zander P (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26:130–143. doi:10.1016/j.eja.2006.09.002

    Article  Google Scholar 

  • Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Avilés-Vázquez K, Samulon A, Perfecto I (2007) Organic agriculture and the global food supply. Renew Agric Food Syst 22:86–108

    Article  Google Scholar 

  • Bergez J-E, Colbach N, Crespo O et al (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9. doi:10.1016/j.eja.2009.06.001

    Article  Google Scholar 

  • Bertilsson G, Kirchmann H, Bergström L (2008) Energy analysis of organic and conventional agricultural systems? In: Kirchmann H, Bergström L (eds) Organic crop production—ambitions and limitations. Springer, Berlin, pp 173–188

  • Bockstaller C, Girardin P, van der Werf HMG (1997) Use of agro-ecological indicators for the evaluation of farming systems. Eur J Agron 7:261–270. doi:10.1016/S1161-0301(97)00041-5

    Article  Google Scholar 

  • Bockstaller C, Guichard L, Makowski D (2008) Agri-environmental indicators to assess crop** and farming systems. A review. Agron Sustain Dev 28:139–149. doi:10.1051/agro:2007052

    Article  Google Scholar 

  • Bohanec M (2011) DE**: program for multi-attribute decision making. User’s manual. Institut Joseph Stefan, Ljubljana

    Google Scholar 

  • Carof M, Colomb B, Aveline A (2012) A guide for choosing the most appropriate method for multi-criteria assessment of agricultural systems according to decision-makers’ expectations. Agric Syst. doi:10.1016/j.agsy.2012.09.011

  • Carpani M, Bergez J-E, Monod H (2012) Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of crop** systems. Environ Model Softw 27–28:15–22. doi:10.1016/j.envsoft.2011.10.002

    Article  Google Scholar 

  • Colomb B, Gafsi M (2011) CITODAB—Contribution des innovations techniques et organisationnelles à la durabilité de l’agriculture biologique. In: PSDR3 Midi-Pyrénées. http://www4.inra.fr/psdr-midi-pyrenees/Projets-de-recherche/CITODAB. Accessed 20 Mar 2012

  • Colomb B, Glandières A, Carpy-Goulard F et al (2009) Analyse énergétique des systèmes de grandes cultures biologiques. Impact du niveau d’intensification. Innov Agron 4:176–181

    Google Scholar 

  • Colomb B, Aveline A, Carof M (2011) Une évaluation multicritère qualitative de la durabilité de systèmes de grandes cultures biologiques. Quels enseignements? Restitution des programmes RotAB et CITODAB. INRA. http://www.itab.asso.fr/downloads/jtgc2011/rapport-citodab.pdf. Accessed 20 Mar 2012

  • COMIFER (2011) Calcul de la fertilisation azotée. Guide méthodologique pour l’établissement des prescriptions locales. Éditions COMIFER, Paris

  • Craheix D, Angevin F, Bergez J-E, Bockstaller C, Colomb B, Guichard L, Reau R, Doré T (2012) MASC 2.0, un outil d’évaluation multicritère pour estimer la contribution des systèmes de culture au développement durable. Innovations Agronomiques 20, 35–48. http://www.inra.fr/ciag/revue/volume_20_juillet_2012. Accessed 15 Oct 2012

  • David C (2010) Grandes cultures: des systèmes en équilibre instable. In: Lamine C, Bellon S (eds) Transitions vers l’agriculture biologique. Pratiques et accompagnements pour des systèmes innovants. Educagri éditions/Éditions Quae, Versailles, pp 129–141

  • David C, Jeuffroy M-H, Henning J, Meynard J-M (2005) Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron Sustain Dev 25:213–223. doi:10.1051/agro:2005016

    Article  Google Scholar 

  • Debaeke P, Munier-Jolain N, Bertrand M et al (2009) Iterative design and evaluation of rule-based crop** systems: methodology and case studies. A review. Agron Sustain Dev 29:73–86. doi:10.1051/agro:2008050

    Article  Google Scholar 

  • DEFRA (2003) Final report. Organic farming: technology transfer. DEFRA project code OF0405

  • Dogliotti S, Rossing WAH, van Ittersum MK (2003) ROTAT, a tool for systematically generating crop rotations. Eur J Agron 19:239–250. doi:10.1016/S1161-0301(02)00047-3

    Article  Google Scholar 

  • Gosling P, Shepherd M (2005) Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105:425–432. doi:10.1016/j.agee.2004.03.007

    Article  CAS  Google Scholar 

  • Goulding K, Stockdale E, Watson C (2008) Plant nutrients in organic farming. In: Kirchmann H, Bergström L (eds) Organic crop production—ambitions and limitations. Springer, Dordrecht, pp 73–88. doi:10.1007/978-1-4020-9316-6_4

    Chapter  Google Scholar 

  • ITAB (2008) RotAB. In: ITAB—Institut Technique de l’Agriculture Biologique. http://www.itab.asso.fr/programmes/rotation.php. Accessed 20 Mar 2012

  • ITAB (2011) Rotations en grandes cultures biologiques sans élevage. 8 fermes-types, 11 rotations. Repères agronomiques, économiques, techniques et environnementaux. p 132

  • Kirchmann H, Bergström L, Katterer T, Andrén O, Andersson R (2008) Can organic crop production feed the world? In: Kirchmann H, Bergström L (eds) Organic crop production—ambitions and limitations. Springer, Berlin, pp 39–72

  • Kropff MJ, Bouma J, Jones JW (2001) Systems approaches for the design of sustainable agro-ecosystems. Agric Syst 70:369–393. doi:10.1016/S0308-521X(01)00052-X

    Article  Google Scholar 

  • Mazzetto F, Bonera R (2003) MEACROS: a tool for multi-criteria evaluation of alternative crop** systems. Eur J Agron 18:379–387. doi:10.1016/S1161-0301(02)00127-2

    Article  Google Scholar 

  • Meynard J-M, Doré T, Habib R (2001) L’évaluation et la conception de systèmes de culture pour une agriculture durable. C R Acad Agric France 87:223–236

    Google Scholar 

  • Mohler CL (2009) The role of crop rotation in weed management. In: Mohler CL, Johnson SE (eds) Crop rotation on organic farms: a planning manual. NRAES, Ithaca, pp 44–46

    Google Scholar 

  • Pacini C, Wossink A, Giesen G et al (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis. Agric Ecosyst Environ 95:273–288. doi:10.1016/S0167-8809(02)00091-9

    Article  Google Scholar 

  • Pelzer E, Fortino G, Bockstaller C, Angevin F, Lamine C, Moonen C, Vasileiadis V, Guérin D, Guichard L, Reau R, Messéan A (2012) Assessing innovative crop** systems with DE**PM, a qualitative multi-criteria assessment tool derived from DE**. Ecol Indic 18:171–182. doi:10.1016/j.ecolind.2011.11.019

    Article  Google Scholar 

  • Pimentel D, Hepperly P, Hanson J, Douds D, Seidel R (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 55:573–582

    Article  Google Scholar 

  • **ault N (2007) Améliorer la qualité de l’eau: Un indicateur pour favoriser une utilisation durable des produits phytosanitaires. Atelier OCDE, 19–21 mars 2007, Washington. Available at http://agriculture.gouv.fr/IMG/pdf/IFT_fr2.pdf. Accessed 12 Oct 2012

  • Raup J, Pekrun C, Oltmanns M, Köpke U (2006) Long term field experiments in organic farming. ISOFAR Scientific Series. Verlag Dr. Köster, Berlin

  • Riquois A (1999) L’agriculture biologique: un prototype au service de l’agriculture conventionnelle pour un développement durable. Aménage Nat 132:49–61

    Google Scholar 

  • RMT DévAB (2011) RMT Développement de l’Agriculture Biologique; http://www.devab.org/moodle/. Accessed 20 Mar 2012

  • RMT SdCi (2011) RMT Systèmes de culture innovants. http://78.155.145.122/rmtsci/moodle. Accessed 20 Mar 2012

  • Sadok W, Angevin F, Bergez J-E et al (2008) Ex ante assessment of the sustainability of alternative crop** systems: implications for using multi-criteria decision-aid methods. A review. Agron Sustain Dev 28:163–174. doi:10.1051/agro:2007043

    Article  Google Scholar 

  • Sadok W, Angevin F, Bergez J-E et al (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of crop** systems. Agron Sustain Dev 29:447–461. doi:10.1051/agro/2009006

    Article  Google Scholar 

  • Seremesic S, Milosev D, Manojlovic M (2008) Evaluation of crop rotation on organic farms in northen Serbia. 16th IFOAM Organic World Congress. Modena Italy

  • Strassert G, Prato T (2002) Selecting farming systems using a new multiple criteria decision model: the balancing and ranking method. Ecol Econ 40:269–277. doi:10.1016/S0921-8009(02)00002-2

    Article  Google Scholar 

  • Vereijken P (1994) Designing prototypes. Progress report 1 of the research network on Integrated and Ecological Arable Farming Systems for EU and associated countries. AB-DLO, Wageningen

    Google Scholar 

  • Vereijken P (1997) A methodical way of prototy** integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7:235–250. doi:10.1016/S1161-0301(97)00039-7

    Article  Google Scholar 

  • Watson CA, Atkinson D, Gosling P et al (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247. doi:10.1111/j.1475-2743.2002.tb00265.x

    Article  Google Scholar 

  • Watson CA, Stockdale EA, Rees RM (2008) Assessment and maintenance of soil fertility in temperate organic agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 3:1–11

    Google Scholar 

  • Wijnands FWT (1999) Crop rotations in organic farming: theory and practice. In: Olesen JE, Eltun R, Gooding MJ et al (eds) Designing and testing crop rotations for organic farming. DARCOF, Foulum, pp 21–36

    Google Scholar 

  • Zander P, Kächele H, Meyer-Aurich A (1999) Development and application of a multi-objective decision support tool for agroecosystem management (MODAM). Q Bull Int Assoc Agric Inf Spec 44:66–72

    Google Scholar 

  • Znidarsic M, Bohanec M, Zupan B (2008) Modelling impacts of crop** systems: demands and solutions for DEX methodology. Eur J Oper Res 189:594–608. doi:10.1016/j.ejor.2006.09.093

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the French Midi-Pyrenees region and INRA via the PSDR 3 “CITODAB” project and by the French Ministry of Agriculture, Food, Fishing and Rural Affairs (MAAPRAT) via the CASDAR “RotAB” project. We warmly thank INRA and AgroParisTech for authorisation to use and modify the MASC model. We thank Michael Corson for correcting the manuscript. We are very grateful to the editorial team and the anonymous reviewers for their helpful comments on improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Colomb.

About this article

Cite this article

Colomb, B., Carof, M., Aveline, A. et al. Stockless organic farming: strengths and weaknesses evidenced by a multicriteria sustainability assessment model. Agron. Sustain. Dev. 33, 593–608 (2013). https://doi.org/10.1007/s13593-012-0126-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0126-5

Keywords

Navigation