Log in

Quality characteristics of purple sweet potato (Ipomoea batatas) slices dehydrated by the addition of maltodextrin

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

As a new dehydration method, purple sweet potato (Ipomoea batatas) slices were dehydrated with maltodextrin (MD) with concentrations of 20, 40, 60, and 80% (w/w). The moisture content of the purple sweet potatoes decreased with an increasing MD concentration. The rehydration ratio of the MD-treated samples was better than those of freeze dried or hot-air dried samples, and the color and total phenolic content of the dehydrated samples were well maintained for the MD-treated one. The anthocyanins in the exudates were obtained after the MD treatment of purple sweet potatoes, and the stability was examined for use as a food colorant. These results suggest that purple sweet potatoes can be dehydrated effectively with MD, and that anthocyanins in the exudates are applicable as a natural food colorant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis. AOAC, Washington, DC, USA.

    Google Scholar 

  • Cevallos-Casals, B.A. and L. Cisneros-Zevallos. 2004. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem. 86:69–77.

    Article  CAS  Google Scholar 

  • Duangmal, K., B. Saicheua, and S. Sueeprasan. 2008. Color evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT — Food Sci. Technol. 41:1437–1445.

    Article  CAS  Google Scholar 

  • Denev, P., M. Ciz, G. Ambrozova, A. Lojek, I. Yanakieva, and M. Kratchanova. 2010. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 123:1055–1061.

    Article  CAS  Google Scholar 

  • Fan, G.J., Y.B. Han, Z.X. Gu, and D.M. Chen. 2008a. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT — Food Sci. Technol. 41:155–160.

    Article  CAS  Google Scholar 

  • Fan, G.J., Y.B. Han, Z.X. Gu, and F.R. Gu. 2008b. Composition and color stability of anthocyanins extracted from fermented purple sweet potato culture. LWT — Food Sci. Technol. 41:1412–1416.

    Article  CAS  Google Scholar 

  • Fu, Y.F., M. Chen, X.L. Ye, Q.T. Zhang, Z.H. Liao, C.X. Yang, and P. He. 2008. Variation laws of anthocyanin content in roots and their relationships with major economic traits in purple-fleshed sweet potato. Agric. Sci. China 7:32–40.

    Google Scholar 

  • Goda, Y., T. Shimizu, Y. Kato, M. Nakamura, T. Maitani, T. Yamada, N. Terahara, and M. Yamaguchi. 1997. Two acylated anthocyanins from purple sweet potato. Phytochem. 44:183–186.

    Article  CAS  Google Scholar 

  • Hosseinian, F.S., W. Li, and T. Beta. 2008. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 109:916–924

    Article  CAS  Google Scholar 

  • Ispir, A. and I.T. Togrul. 2009. Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chem. Eng. Res. Design 87:166–180.

    Article  CAS  Google Scholar 

  • Kwak, J.H., G.N. Choi, J.H. Park, J.H. Kim, H.R. Jeong, C.H. Jeong, and H.J. Heo. 2010. Antioxidant and neuronal cell protective effect of purple sweet potato extract. J. Agric. Life Sci. 44:57–66.

    Google Scholar 

  • Kim, M.H., K.S. Kim, Y.B. Song, W.J. Seo, and K.B. Song. 2009a. Characteristics of apple, persimmon, and strawberry slices dried with maltodextrin. J. Food Sci. Nutr. 14:367–372.

    Article  CAS  Google Scholar 

  • Kim, M.H., M.K. Kim, M.S. Yu, Y.B. Song, W.J. Seo, and K.B. Song. 2009b. Dehydration of sliced ginger using maltodextrin and comparison with hot-air dried and freeze-dried ginger. J. Kor. Food Sci. Technol. 41:146–150.

    Google Scholar 

  • Kim, M.K., M.H. Kim, M.S. Yu, Y.B. Song, W.J. Seo, and K.B. Song. 2009c. Dehydration of carrot slice using polyethylene glycol and maltodextrin and comparison with other drying methods. J. Kor. Soc. Food Sci. Nutr. 38:111–115.

    Article  CAS  Google Scholar 

  • Krokida, M.K., V.T. Karathanos, and Z.B. Maroulis. 1998. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J. Food Eng. 35:369–380.

    Article  Google Scholar 

  • Kano, M., T. Takayanagi, K. Harada, K. Makino, and F. Ishikawa. 2005. Antioxidant activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 69:979–988.

    Article  PubMed  CAS  Google Scholar 

  • Lombard, G.E., J.C. Oliveira, P. Fito, and A. Andres. 2008. Osmotic dehydration of pineapple as a pre-treatment for further drying. J. Food Eng. 85:277–284.

    Article  Google Scholar 

  • Lee, J. 2005. Determination of total monomeric anthocyanin pigment content of fruits juices, beverages, natural colorants and wines by the pH differential method: Collaborative study. J. AOAC Int. 88:1269–1278.

    PubMed  CAS  Google Scholar 

  • Moreira, R., F. Chenlo, L. Chaguri, and C. Fernandes. 2008. Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. J. Food Eng. 86:584–594.

    Article  Google Scholar 

  • Maqsood, S. and S. Benjakul. 2010. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 119:123–132.

    Article  CAS  Google Scholar 

  • Nayak, C.A. and N.K. Rastogi. 2010. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Sep. Purific. Technol. 71:144–151.

    Article  CAS  Google Scholar 

  • Philpott, P., K. Gould, K. Markham, L. Lewthwaite, and L. Ferguson. 2003. Enhanced coloration reveals high antioxidant potential in new sweet potato cultivars. J. Food Sci. Agric. 83:1076–1082.

    Article  CAS  Google Scholar 

  • Rumbaoa, R.G.O., D.F. Cornago, and I.M. Geronimo. 2009a. Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. J. Food Comp. Anal. 22:546–550.

    Article  CAS  Google Scholar 

  • Rumbaoa, R.G.O., D.F. Cornago, and I.M. Geronimo. 2009b. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 113:1133–1138.

    Article  CAS  Google Scholar 

  • Rastogi, N.K., C.A. Nayak, and K.S.M.S. Raghavarao. 2004. Influence of osmotic pre-treatments on rehydration characteristics of carrots. J. Food Eng. 65:287–292.

    Article  Google Scholar 

  • Ratti, C. 2001. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 49:311–319.

    Article  Google Scholar 

  • Severini, C., A. Baiano, T.D. Pilli, B.F. Carbone, and A. Derossi. 2005. Combined treatments of blanching and dehydration: study on potato cubes. J. Food Eng. 68:289–296.

    Article  Google Scholar 

  • Shih, M.C., C.C. Kuo, and W.C. Chiang. 2009. Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117:114–121.

    Article  CAS  Google Scholar 

  • Taiwo, K.A., A. Angersbach, and D. Knorr. 2002. Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. J. Food Eng. 52:185–192.

    Article  Google Scholar 

  • Teow, C., V.D. Truong, R. McFeeters, R. Thompson, K. Pacota, and G. Yencho. 2007. Antioxidant activities, phenolic and -carotene contents of sweet potato genotypes with varying flesh colors. Food Chem. 103:829–838.

    Article  CAS  Google Scholar 

  • Yoo, M.S. 2005. Molecular press dehydration of plant tissues using soluble high molecular weight dehydrating agent. Korean Patent 10-04748861.

  • Wang, Y.J., Y.L. Zheng, J. Lu, G.Q. Chen, X.H. Wang, J. Feng, J. Ruan, X. Sun, C.X. Li, and Q.J. Sun. 2010. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem. Int. 56:424–430.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D.M., L.U. Jun, Y.L. Zheng, Z. Zhou, Q. Shan, and D.F. Ma. 2008. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol. Learning Memory 90:19–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Bin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SM., Yu, DJ. & Song, K.B. Quality characteristics of purple sweet potato (Ipomoea batatas) slices dehydrated by the addition of maltodextrin. Hortic. Environ. Biotechnol. 52, 435–441 (2011). https://doi.org/10.1007/s13580-011-0015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-011-0015-x

Additional key words

Navigation