Log in

Targeted inhibition of SUMOylation: treatment of tumors

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

SUMOylation is a dynamic and reversible post-translational modification (PTM) of proteins involved in the regulation of biological processes such as protein homeostasis, DNA repair and cell cycle in normal and tumor cells. In particular, overexpression of SUMOylation components in tumor cells increases the activity of intracellular SUMOylation, protects target proteins against ubiquitination degradation and activation, promoting tumor cell proliferation and metastasis, providing immune evasion and increasing tolerance to chemotherapy and antitumor drugs. However, with the continuous research on SUMOylation and with the continued development of SUMOylation inhibitors, it has been found that tumor initiation and progression can be inhibited by blocking SUMOylation and/or in combination with drugs. SUMOylation is not a bad target when trying to treat tumor. This review introduces SUMOylation cycle pathway and summarizes the role of SUMOylation in tumor initiation and progression and SUMOylation inhibitors and their functions in tumors and provides a prospective view of SUMOylation as a new therapeutic target for tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The information used in the findings of this review article is available in the PubMed online database.

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomark Prevent. 2016;25(1):16–27.

    Article  Google Scholar 

  2. Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Lyon: international agency for research on cancer; 2020.

  3. Suhail Y, Cain MP, Vanaja K, et al. Systems biology of cancer metastasis. Cell Syst. 2019;9(2):109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell. 2023;186(18):3945-67.e26.

    Article  CAS  PubMed  Google Scholar 

  5. Tikhonov D, Kulikova L, Kopylov AT, et al. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep. 2021;11(1):19318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han ZJ, Feng YH, Gu BH, et al. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52(4):1081–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Okura T, Gong L, Kamitani T, et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol. 1996;157(10):4277–81.

    Article  CAS  PubMed  Google Scholar 

  8. Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 2004;18(17):2046–59.

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  10. Qin Y, Li Q, Liang W, et al. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun. 2021;12(1):4794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 2012;151(4):807–20.

    Article  CAS  PubMed  Google Scholar 

  12. Enserink JM. Sumo and the cellular stress response. Cell Div. 2015;10:4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 2013;82:357–85.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkinson KA, Konopacki F, Henley JM. Modification and movement: phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors. Commun Integr Biol. 2012;5(2):223–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park HJ, Kim WY, Park HC, et al. SUMO and SUMOylation in plants. Mol Cells. 2011;32(4):305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82.

    Article  CAS  PubMed  Google Scholar 

  17. Melchior F. SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000;16:591–626.

    Article  CAS  PubMed  Google Scholar 

  18. Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23(11):715–31.

    Article  CAS  PubMed  Google Scholar 

  19. Drag M, Salvesen GS. DeSUMOylating enzymes–SENPs. IUBMB Life. 2008;60(11):734–42.

    Article  CAS  PubMed  Google Scholar 

  20. Kroonen JS, Vertegaal ACO. Targeting SUMO signaling to wrestle cancer. Trends Cancer. 2021;7(6):496–510.

    Article  CAS  PubMed  Google Scholar 

  21. Nayak A, Müller S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 2014;15(7):422.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sampson DA, Wang M, Matunis MJ. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem. 2001;276(24):21664–9.

    Article  CAS  PubMed  Google Scholar 

  23. Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem. 2000;275(46):36316–23.

    Article  CAS  PubMed  Google Scholar 

  24. Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007;8(6):550–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 2007;32(6):286–95.

    Article  CAS  PubMed  Google Scholar 

  26. Shen LN, Dong C, Liu H, et al. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J. 2006;397(2):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gong L, Yeh ET. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem. 2006;281(23):15869–77.

    Article  CAS  PubMed  Google Scholar 

  28. Shen LN, Geoffroy MC, Jaffray EG, Hay RT. Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J. 2009;421(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  29. Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017;17(3):184–97.

    Article  CAS  PubMed  Google Scholar 

  30. **a QD, Sun JX, Xun Y, et al. SUMOylation pattern predicts prognosis and indicates tumor microenvironment infiltration characterization in bladder cancer. Front Immunol. 2022;13:864156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998;2(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  32. Demel UM, Böger M, Yousefian S, et al. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest. 2022;132(9):e152383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang FL, Yang SY, Liao L, et al. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics. 2023;13(3):973–90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu R, Fang J, Liu M, et al. SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation. J Biol Chem. 2020;295(19):6741–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo H, Xu J, Zheng Q, et al. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett. 2019;466:39–48.

    Article  CAS  PubMed  Google Scholar 

  36. Oh S, Shin S, Janknecht R. Sumoylation of transcription factor ETV1 modulates its oncogenic potential in prostate cancer. Int J Clin Exp Pathol. 2021;14(7):795–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung PF, Hong TM, Chang CC, et al. Hypoxia-induced Slug SUMOylation enhances lung cancer metastasis. J Exp Clin Cancer Res. 2019;38(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Y, **ng Y, Wang X, et al. PAK5 promotes RNA helicase DDX5 sumoylation and miRNA-10b processing in a kinase-dependent manner in breast cancer. Cell Rep. 2021;37(12):110127.

    Article  CAS  PubMed  Google Scholar 

  39. Nadanaka S, Bai Y, Kitagawa H. Cleavage of syndecan-1 promotes the proliferation of the basal-like breast cancer cell line BT-549 via Akt SUMOylation. Front Cell Dev Biol. 2021;9:659428

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li W, Han Q, Zhu Y, et al. SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma. Oncogene. 2023;42(21):1728–40.

    Article  CAS  PubMed  Google Scholar 

  41. Xu H, Wang H, Zhao W, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10(13):5671–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang A, Tao W, Zhai K, et al. Protein sumoylation with SUMO1 promoted by Pin1 in glioma stem cells augments glioblastoma malignancy. Neuro Oncol. 2020;22(12):1809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. You H, Yuan D, Li Q, et al. Hepatitis B virus X protein increases LASP1 SUMOylation to stabilize HER2 and facilitate hepatocarcinogenesis. Int J Biol Macromol. 2023;226:996–1009.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Q, Zhang K, Li Z, et al. High migration and invasion ability of PGCCs and their daughter cells associated with the nuclear localization of S100A10 modified by SUMOylation. Front Cell Dev Biol. 2021;9:696871.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Wu Z, Han D, et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/Snail signaling pathway and epithelial-mesenchymal transition. Hepatology. 2020;71(4):1262–78.

    Article  CAS  PubMed  Google Scholar 

  46. Shangguan X, He J, Ma Z, et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 2021;12(1):1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang M, Jiang X. SUMOylation of vascular endothelial growth factor receptor 2 inhibits the proliferation, migration, and angiogenesis signaling pathway in non-small cell lung cancer. Anticancer Drugs. 2020;31(5):492–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lorente M, García-Casas A, Salvador N, et al. Inhibiting SUMO1-mediated SUMOylation induces autophagy-mediated cancer cell death and reduces tumour cell invasion via RAC1. J Cell Sci. 2019;132(20):jcs234120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bogachek MV, Park JM, De Andrade JP, et al. Inhibiting the SUMO pathway represses the cancer stem cell population in breast and colorectal carcinomas. Stem Cell Rep. 2016;7(6):1140–51.

    Article  CAS  Google Scholar 

  50. Liu X, Xu Y, Pang Z, et al. Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J Hematol Oncol. 2015;8:67.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fukuda I, Ito A, Hirai G, et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol. 2009;16(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  52. Fukuda I, Ito A, Uramoto M, et al. Kerriamycin B inhibits protein SUMOylation. J Antibiot (Tokyo). 2009;62(4):221–4.

    Article  CAS  PubMed  Google Scholar 

  53. Hamdoun S, Efferth T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget. 2017;8(21):35103–15.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu D, Li Z, Yang Z, Ma J, Mai S. Ginkgoic acid impedes gastric cancer cell proliferation, migration and EMT through inhibiting the SUMOylation of IGF-1R. Chem Biol Interact. 2021;337: 109394.

    Article  CAS  PubMed  Google Scholar 

  55. Hayakawa Y, Iwakiri T, Imamura K, et al. Studies on the isotetracenone antibiotics. II. Kerriamycins A, B and C, new antitumor antibiotics. J Antibiot (Tokyo). 1985;38(7):960–3.

    Article  CAS  PubMed  Google Scholar 

  56. Benoit YD, Mitchell RR, Wang W, et al. Targeting SUMOylation dependency in human cancer stem cells through a unique SAE2 motif revealed by chemical genomics. Cell Chem Biol. 2021;28(10):1394-406.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li YJ, Du L, Wang J, et al. Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme. Cell Chem Biol. 2019;26(2):278-88.e6.

    Article  CAS  PubMed  Google Scholar 

  58. Lv Z, Yuan L, Atkison JH, et al. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 2018;9(1):5145.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Magin RS, Doherty LM, Buhrlage SJ. Discovery of a first-in-class covalent allosteric inhibitor of SUMO E1 activating enzyme. Cell Chem Biol. 2019;26(2):153–5.

    Article  CAS  PubMed  Google Scholar 

  60. He X, Riceberg J, Soucy T, et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol. 2017;13(11):1164–71.

    Article  CAS  PubMed  Google Scholar 

  61. Garcia P, Harrod A, Jha S, et al. Effects of targeting sumoylation processes during latent and induced Epstein-Barr virus infections using the small molecule inhibitor ML-792. Antiviral Res. 2021;188: 105038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biederstädt A, Hassan Z, Schneeweis C, et al. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut. 2020;69(8):1472–82.

    Article  PubMed  Google Scholar 

  63. Kumar S, Schoonderwoerd MJA, Kroonen JS, et al. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut. 2022;71(11):2266–83.

    Article  CAS  PubMed  Google Scholar 

  64. Langston SP, Grossman S, England D, et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J Med Chem. 2021;64(5):2501–20.

    Article  CAS  PubMed  Google Scholar 

  65. Lightcap ES, Yu P, Grossman S, et al. A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Sci Transl Med. 2021;13(611):eaba7791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakamura A, Grossman S, Song K, et al. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood. 2022;139(18):2770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kroonen JS, de Graaf IJ, Kumar S, et al. Inhibition of SUMOylation enhances DNA hypomethylating drug efficacy to reduce outgrowth of hematopoietic malignancies. Leukemia. 2023;37(4):864–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Du L, Liu W, Aldana-Masangkay G, et al. SUMOylation inhibition enhances dexamethasone sensitivity in multiple myeloma. J Exp Clin Cancer Res. 2022;41(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Du L, Liu W, Pichiorri F, Rosen ST. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther. 2023;30(4):567–74.

    Article  CAS  PubMed  Google Scholar 

  70. Heynen G, Baumgartner F, Heider M, et al. SUMOylation inhibition overcomes proteasome inhibitor resistance in multiple myeloma. Blood Adv. 2023;7(4):469–81.

    Article  CAS  PubMed  Google Scholar 

  71. Bentz GL, Lowrey AJ, Horne DC, et al. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS ONE. 2019;14(5): e0217578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suzawa M, Miranda DA, Ramos KA, et al. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. Elife. 2015;4:e09003.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Takemoto M, Kawamura Y, Hirohama M, et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata. J Antibiot (Tokyo). 2014;67(4):335–8.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang M, Jiang D, **e X, et al. miR-129-3p inhibits NHEJ pathway by targeting SAE1 and represses gastric cancer progression. Int J Clin Exp Pathol. 2019;12(5):1539–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fukuda I, Hirohama M, Ito A, et al. Inhibition of protein SUMOylation by natural quinones. J Antibiot (Tokyo). 2016;69(10):776–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wang L, Ji S. Inhibition of Ubc9-induced CRMP2 SUMOylation disrupts glioblastoma cell proliferation. J Mol Neurosci. 2019;69(3):391–8.

    Article  CAS  PubMed  Google Scholar 

  77. Hirohama M, Kumar A, Fukuda I, et al. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem Biol. 2013;8(12):2635–42.

    Article  CAS  PubMed  Google Scholar 

  78. Liu H, Lee SM, Joung H. 2-D08 treatment regulates C2C12 myoblast proliferation and differentiation via the Erk1/2 and proteasome signaling pathways. J Muscle Res Cell Motil. 2021;42(2):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim YS, Nagy K, Keyser S, et al. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem Biol. 2013;20(4):604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi BH, Philips MR, Chen Y, et al. K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion. J Biol Chem. 2018;293(45):17574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brackett CM, Blagg BSJ. Current status of SUMOylation inhibitors. Curr Med Chem. 2021;28(20):3892–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loya-Lopez SI, Allen HN, Duran P, et al. Intranasal CRMP2-Ubc9 inhibitor regulates NaV1.7 to alleviate trigeminal neuropathic pain. Pain. 2023;18:62.

    Google Scholar 

Download references

Acknowledgements

We thank the institution for its help in writing this article.

Funding

This work was supported by the Yunnan Fundamental Research Projects (202101BE070001-004) and the Natural Science Foundation of China (82260461).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Chao Huang.

Ethics declarations

Competing interests

The authors declare no competing interest.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All the authors agree to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhao, P. & Huang, C. Targeted inhibition of SUMOylation: treatment of tumors. Human Cell (2024). https://doi.org/10.1007/s13577-024-01092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01092-9

Keywords

Navigation