Log in

Aquaporins in colorectal cancer: exploring their role in tumorigenesis, metastasis, and drug response

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are small, integral proteins facilitating water transport across plasma cell membranes in response to osmotic gradients. This family has 13 unique members (AQP0-12), which can also transport glycerol, urea, gases, and other salute small molecules. AQPs play a crucial role in the regulation of different cellular processes, including metabolism, migration, immunity, barrier function, and angiogenesis. These proteins are found to aberrantly overexpress in various cancers, including colorectal cancer (CRC). Growing evidence has explored AQPs as a potential diagnostic biomarker and therapeutic target in different cancers. However, there is no comprehensive review compiling the available information on the crucial role of AQPs in the context of colorectal cancer. This review highlights the significance of AQPs as the biomarker and regulator of tumor cells metabolism. In addition, the proliferation, angiogenesis, and metastasis of tumor cells related to AQPs expression as well as function are discussed. Understanding the AQPs prominent role in chemotherapy resistance is of great importance clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y, et al. Exploring immunotherapy in colorectal cancer. J Hematol Oncol. 2022;15(1):1–28.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics 2020. CA Cancer J Clin. 2020;70(3):145–64.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  4. Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022;72(4):372–401.

    Article  PubMed  Google Scholar 

  5. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–85.

    Article  CAS  PubMed  Google Scholar 

  6. Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420–44.

    Article  PubMed  Google Scholar 

  7. De Ieso ML, Yool AJ. Mechanisms of aquaporin-facilitated cancer invasion and metastasis. Front Chem. 2018;6:135.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Zhang Y, Wu X, Yu G. Aquaporins: new targets for cancer therapy. Technol Cancer Res Treat. 2016;15(6):821–8.

    Article  CAS  PubMed  Google Scholar 

  9. Moosavi M-S, Elham Y. Aquaporins 1, 3 and 5 in different tumors, their expression, prognosis value and role as new therapeutic targets. Pathol Oncol Res. 2020;26(2):615–25.

    Article  PubMed  Google Scholar 

  10. Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol. 2021;236(9):6115–35.

    Article  CAS  PubMed  Google Scholar 

  11. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discovery. 2014;13(4):259–77.

    Article  CAS  PubMed  Google Scholar 

  12. Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta (BBA) Biomembr. 2015;1848(10):2576–83.

    Article  CAS  Google Scholar 

  13. Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci. 2016;73:1623–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adeoye A, Odugbemi A, Ajewole T. Structure and function of aquaporins: the membrane water channel proteins. Biointerface Res Appl Chem. 2021;12:690–705.

    Article  Google Scholar 

  15. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.

    Article  CAS  PubMed  Google Scholar 

  16. Dingwell DA, Brown LS, Ladizhansky V. Structure of the functionally important extracellular loop C of human aquaporin 1 obtained by solid-state NMR under nearly physiological conditions. J Phys Chem B. 2019;123(36):7700–10.

    Article  CAS  PubMed  Google Scholar 

  17. Frick A, Eriksson UK, de Mattia F, Öberg F, Hedfalk K, Neutze R, et al. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci. 2014;111(17):6305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc Natl Acad Sci. 2009;106(18):7437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horsefield R, Nordén K, Fellert M, Backmark A, Törnroth-Horsefield S, van Scheltinga ACT, et al. High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci. 2008;105(36):13327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Mare SW, Venskutonytė R, Eltschkner S, de Groot BL, Lindkvist-Petersson K. Structural basis for glycerol efflux and selectivity of human aquaporin 7. Structure. 2020;28(2):215–22.

    Article  PubMed  Google Scholar 

  21. Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018;9(1):1–11.

    Article  CAS  Google Scholar 

  22. Verkman A, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000;278(1):F13–28.

    Article  CAS  PubMed  Google Scholar 

  23. de Groot BL, Engel A, Grubmüller H. The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography. J Mol Biol. 2003;325(3):485–93.

    Article  PubMed  Google Scholar 

  24. Kozono D, Yasui M, King LS, Agre P. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Investig. 2002;109(11):1395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang F, Feng XC, Li YM, Yang H, MA TH. Aquaporins as potential drug targets 1. Acta Pharmacol Sin. 2006;27(4):395–401.

    Article  CAS  PubMed  Google Scholar 

  26. Benga G. On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Mol Aspects Med. 2012;33(5–6):514–7.

    Article  CAS  PubMed  Google Scholar 

  27. Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell. 1984;39(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  28. Berry V, Francis P, Kaushal S, Moore A, Bhattacharya S. Missense mutations in MIP underlie autosomal dominant ‘polymorphic’and lamellar cataracts linked to 12q. Nat Genet. 2000;25(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  29. Morelle J, Marechal C, Yu Z, Debaix H, Corre T, Lambie M, et al. AQP1 promoter variant, water transport, and outcomes in peritoneal dialysis. N Engl J Med. 2021;385(17):1570–80.

    Article  CAS  PubMed  Google Scholar 

  30. Bichet DG. Aquaporin-1 Expression and Ultrafiltration of the Peritoneal Membrane. Mass Med Soc. 2021;385:1617–9.

    CAS  Google Scholar 

  31. Chen Y, Tachibana O, Oda M, Xu R, Hamada JI, Yamashita J, et al. Increased expression of aquaporin 1 in human hemangioblastomas and its correlation with cyst formation. J Neurooncol. 2006;80:219–25.

    Article  CAS  PubMed  Google Scholar 

  32. Endo M, Jain RK, Witwer B, Brown D. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res. 1999;58(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  33. Hoque MO, Soria J-C, Woo J, Lee T, Lee J, Jang SJ, et al. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol. 2006;168(4):1345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Longatti P, Basaldella L, Orvieto E, Dei Tos A, Martinuzzi A. Aquaporin (s) expression in choroid plexus tumours. Pediatr Neurosurg. 2006;42(4):228–33.

    Article  PubMed  Google Scholar 

  35. Tarawneh N, Hamadneh L, Abu-Irmaileh B, Shraideh Z, Bustanji Y, Abdalla S. Berberine inhibited growth and migration of human colon cancer cell lines by increasing phosphatase and tensin and inhibiting aquaporins 1, 3 and 5 expressions. Molecules. 2023;28(9):3823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Traberg-Nyborg L, Login FH, Edamana S, Tramm T, Borgquist S, Nejsum LN. Aquaporin-1 in breast cancer. APMIS. 2022;130(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  37. Saadoun S, Papadopoulos M, Davies D, Bell B, Krishna S. Increased aquaporin 1 water channel expression inhuman brain tumours. Br J Cancer. 2002;87(6):621–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vacca A, Frigeri A, Ribatti D, Nicchia GP, Nico B, Ria R, et al. Microvessel overexpression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. Br J Haematol. 2001;113(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  39. El Hindy N, Bankfalvi A, Herring A, Adamzik M, Lambertz N, Zhu Y, et al. Correlation of aquaporin-1 water channel protein expression with tumor angiogenesis in human astrocytoma. Anticancer Res. 2013;33(2):609–13.

    PubMed  Google Scholar 

  40. Niu D, Bai Y, Yao Q, Zhou L, Huang X, Zhao C. AQP2 as a diagnostic immunohistochemical marker for pheochromocytoma and/or paraganglioma. Gland Surg. 2020;9(2):200.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wan S, Jiang J, Zheng C, Wang N, Zhai X, Fei X, et al. Estrogen nuclear receptors affect cell migration by altering sublocalization of AQP2 in glioma cell lines. Cell death discovery. 2018;4(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Verkman A. Aquaporins in clinical medicine. Annu Rev Med. 2012;63:303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marlar S, Jensen HH, Login FH, Nejsum LN. Aquaporin-3 in cancer. Int J Mol Sci. 2017;18(10):2106.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vandebroek A, Yasui M. Regulation of AQP4 in the central nervous system. Int J Mol Sci. 2020;21(5):1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saadoun S, Papadopoulos M, Davies D, Krishna S, Bell B. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72(2):262–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol. 2010;221(2):210–20.

    Article  CAS  PubMed  Google Scholar 

  47. Bystrup M, Login FH, Edamana S, Borgquist S, Tramm T, Kwon TH, et al. Aquaporin-5 in breast cancer. APMIS. 2022;130(5):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan C, Yang J, Shen L, Chen X. Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet. 2012;285:459–67.

    Article  CAS  PubMed  Google Scholar 

  49. Kang BW, Kim JG, Lee SJ, Chae YS, Jeong JY, Yoon GS, et al. Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer. Oncology. 2015;88(6):369–76.

    Article  CAS  PubMed  Google Scholar 

  50. Ma J, Zhou C, Yang J, Ding X, Zhu Y, Chen X. Expression of AQP6 and AQP8 in epithelial ovarian tumor. J Mol Histol. 2016;47:129–34.

    Article  CAS  PubMed  Google Scholar 

  51. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells: requirement of pore-lining residue threonine 63. J Biol Chem. 2002;277(42):39873–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014;52(2):R165–78.

    Article  CAS  PubMed  Google Scholar 

  53. Dai C, Charlestin V, Wang M, Walker ZT, Miranda-Vergara MC, Facchine BA, et al. Aquaporin-7 regulates the response to cellular stress in breast cancer. Can Res. 2020;80(19):4071–86.

    Article  CAS  Google Scholar 

  54. Shi Y-H, Chen R, Talafu T, Nijiati R, Lalai S. Significance and expression of aquaporin 1, 3, 8 in cervical carcinoma in **njiang Uygur women of China. Asian Pac J Cancer Prev. 2012;13(5):1971–5.

    Article  PubMed  Google Scholar 

  55. Zhu L, Ma N, Wang B, Wang L, Zhou C, Yan Y, et al. Significant prognostic values of aquaporin mRNA expression in breast cancer. Cancer Manag Res. 2019;11:1503–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang W, Li Q, Yang T, Bai G, Li D, Li Q, et al. Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance. World J Surg Oncol. 2012;10(1):1–5.

    Article  Google Scholar 

  57. Yang J, Yan C, Chen X, Zhu Y. Expression of aquaglyceroporins in epithelial ovarian tumours and their clinical significance. J Int Med Res. 2011;39(3):702–11.

    Article  CAS  PubMed  Google Scholar 

  58. Gena P, Pellegrini-Calace M, Biasco A, Svelto M, Calamita G. Aquaporin membrane channels: biophysics, classification, functions, and possible biotechnological applications. Food Biophys. 2011;6:241–9.

    Article  Google Scholar 

  59. Shi Z, Zhang T, Luo L, Zhao H, Cheng J, **ang J, et al. Aquaporins in human breast cancer: identification and involvement in carcinogenesis of breast cancer. J Surg Oncol. 2012;106(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang M, Li T, Zhu J, Tuo B, Liu X, Medicine M. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med. 2020;24(17):9486–94.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nico B, Ribatti D. Role of aquaporins in cell migration and edema formation in human brain tumors. Exp Cell Res. 2011;317(17):2391–6.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang Y. Aquaporin-1 activity of plasma membrane affects HT20 colon cancer cell migration. IUBMB Life. 2009;61(10):1001–9.

    Article  CAS  PubMed  Google Scholar 

  63. Dorward HS, Du A, Bruhn MA, Wrin J, Pei JV, Evdokiou A, et al. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro. J Exp Clin Cancer Res. 2016;35(1):1–9.

    Article  Google Scholar 

  64. Yoshida T, Hojo S, Sekine S, Sawada S, Okumura T, Nagata T, et al. Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Mol Clin Oncol. 2013;1(6):953–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moon C, Soria J-C, Jang SJ, Lee J, Hoque MO, Sibony M, et al. Involvement of aquaporins in colorectal carcinogenesis. Oncogene. 2003;22(43):6699–703.

    Article  CAS  PubMed  Google Scholar 

  66. Smith E, Tomita Y, Palethorpe HM, Howell S, Nakhjavani M, Townsend AR, et al. Reduced aquaporin-1 transcript expression in colorectal carcinoma is associated with promoter hypermethylation. Epigenetics. 2019;14(2):158–70.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li A, Lu D, Zhang Y, Li J, Fang Y, Li F, et al. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol Rep. 2013;29(2):535–40.

    Article  PubMed  Google Scholar 

  68. Woo J, Lee J, Chae YK, Kim MS, Baek JH, Park JC, et al. Overexpression of AQP5, a putative oncogene, promotes cell growth and transformation. Cancer Lett. 2008;264(1):54–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kang SK, Chae YK, Woo J, Kim MS, Park JC, Lee J, et al. Role of human aquaporin 5 in colorectal carcinogenesis. Am J Pathol. 2008;173(2):518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang J, Feng L, Zhu Z, Zheng M, Wang D, Chen Z, et al. Aquaporins as diagnostic and therapeutic targets in cancer: how far we are? J Transl Med. 2015;13(1):1–11.

    Article  Google Scholar 

  71. Shan T, Cui X, Li W, Lin W, Li Y. AQP5: a novel biomarker that predicts poor clinical outcome in colorectal cancer. Oncol Rep. 2014;32(4):1564–70.

    Article  CAS  PubMed  Google Scholar 

  72. Wang W, Li Q, Yang T, Li D, Ding F, Sun H, et al. Anti-cancer effect of Aquaporin 5 silencing in colorectal cancer cells in association with inhibition of Wnt/β-catenin pathway. Cytotechnology. 2018;70:615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang W, Li Q, Yang T, Li D, Ding F, Sun H, et al. RNA interference-mediated silencing of aquaporin (AQP)-5 hinders angiogenesis of colorectal tumor by suppressing the production of vascular endothelial growth factor. Neoplasma. 2018;65(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  74. Shi X, Wu S, Yang Y, Tang L, Wang Y, Dong J, et al. AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumor Biol. 2014;35:7035–45.

    Article  CAS  Google Scholar 

  75. Jensen HH, Login FH, Koffman JS, Kwon T-H, Nejsum LN. The role of aquaporin-5 in cancer cell migration: A potential active participant. The Int J Biochem Cell Biol. 2016;79:271–6.

    Article  CAS  PubMed  Google Scholar 

  76. De Qing Wu ZFY, Wang KJ, Feng XY, Lv ZJ, Li Y, Jian ZX. AQP8 inhibits colorectal cancer growth and metastasis by down-regulating PI3K/AKT signaling and PCDH7 expression. Am J Cancer Res. 2018;8(2):266.

    Google Scholar 

  77. Liu Y, Gao Q, Feng X, Chen G, Jiang X, Chen D, et al. Aquaporin 9 is involved in CRC metastasis through DVL2-dependent Wnt/β-catenin signaling activation. Gastroenterol Rep. 2023. https://doi.org/10.1093/gastro/goad033.

    Article  Google Scholar 

  78. Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins–aquaporins (AQPs) in cancer biology. Oncotarget. 2018;9(91):36392.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lan Y-L, Wang X, Lou J-C, Ma X-C, Zhang B. The potential roles of aquaporin 4 in malignant gliomas. Oncotarget. 2017;8(19):32345.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Song T, Yang H, Ho JCM, Tang SCW, Sze SCW, Lao L, et al. Expression of aquaporin 5 in primary carcinoma and lymph node metastatic carcinoma of non-small cell lung cancer. Oncol Lett. 2015;9(6):2799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kitchen P, Öberg F, Sjöhamn J, Hedfalk K, Bill RM, Conner AC, et al. Plasma membrane abundance of human aquaporin 5 is dynamically regulated by multiple pathways. PLoS ONE. 2015;10(11):e0143027.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Beitz E, Golldack A, Rothert M, von Buelow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther. 2015;155:22–35.

    Article  CAS  PubMed  Google Scholar 

  83. Sugimoto T, Huang L, Minematsu T, Yamamoto Y, Asada M, Nakagami G, et al. Impaired aquaporin 3 expression in reepithelialization of cutaneous wound healing in the diabetic rat. Biol Res Nurs. 2013;15(3):347–55.

    Article  CAS  PubMed  Google Scholar 

  84. Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10(10):1548–56.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ribatti D, Ranieri G, Annese T, Nico B. Aquaporins in cancer. Biochim Biophys Acta (BBA) Gen Subj. 2014;1840(5):1550–3.

    Article  CAS  Google Scholar 

  86. Aikman B, De Almeida A, Meier-Menches SM, Casini A. Aquaporins in cancer development: opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics. 2018;10(5):696–712.

    Article  CAS  PubMed  Google Scholar 

  87. Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. Biochim Biophys Acta (BBA) Biomembr. 2016;1858(1):1–11.

    Article  CAS  Google Scholar 

  88. Hara M, Verkman A. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci. 2003;100(12):7360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K. Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem. 1999;47(10):1275–86.

    Article  CAS  PubMed  Google Scholar 

  90. Li Z, Li B, Zhang L, Chen L, Sun G, Zhang Q, et al. The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumor Biol. 2016;37(7):9169–79.

    Article  CAS  Google Scholar 

  91. Cairns R, Harris I, McCracken S, Mak T, editors. Cancer cell metabolism. Cold Spring Harbor symposia on quantitative biology; 2011: Cold Spring Harbor Laboratory Press.

  92. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Watt MJ, Steinberg GR. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 2008;414(3):313–25.

    Article  CAS  PubMed  Google Scholar 

  94. Verkman A, Hara-Chikuma M, Papadopoulos MC. Aquaporins—new players in cancer biology. J Mol Med. 2008;86(5):523–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hara-Chikuma M, Verkman A. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol. 2008;28(1):326–32.

    Article  CAS  PubMed  Google Scholar 

  96. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  97. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pike Winer LS, Wu M. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS ONE. 2014;9(10):e109916.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Warth A, Mittelbronn M, Hülper P, Erdlenbruch B, Wolburg H. Expression of the water channel protein aquaporin-9 in malignant brain tumors. Appl Immunohistochem Mol Morphol. 2007;15(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  100. Tan G, Sun S, Yuan D. Expression of the water channel protein aquaporin-9 in human astrocytic tumours: correlation with pathological grade. J Int Med Res. 2008;36(4):777–82.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang W-g, Li C-f, Liu M, Chen X-f, Shuai K, Kong X, et al. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett. 2016;378(2):111–9.

    Article  CAS  PubMed  Google Scholar 

  102. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2012;64:138–53.

    Article  Google Scholar 

  103. van Zanden JJ, Geraets L, Wortelboer HM, van Bladeren PJ, Rietjens IM, Cnubben NH. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1–1 and GS-X pump activity in MCF7 breast cancer cells. Biochem Pharmacol. 2004;67(8):1607–17.

    Article  PubMed  Google Scholar 

  104. Oloumi A, MacPhail SH, Johnston PJ, Banáth JP, Olive PL. Changes in subcellular distribution of topoisomerase IIα correlate with etoposide resistance in multicell spheroids and xenograft tumors. Can Res. 2000;60(20):5747–53.

    CAS  Google Scholar 

  105. Beck WT. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987;36(18):2879–87.

    Article  CAS  PubMed  Google Scholar 

  106. Gao L, Gao Y, Li X, Howell P, Kumar R, Su X, et al. Aquaporins mediate the chemoresistance of human melanoma cells to arsenite. Mol Oncol. 2012;6(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  107. Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S, et al. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS ONE. 2008;3(7):e2594.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Guo X, Ma N, Wang J, Song J, Bu X, Cheng Y, et al. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer. 2008;8(1):1–9.

    Article  Google Scholar 

  109. Shen H, Xu W, Luo W, Zhou L, Yong W, Chen F, et al. Upregulation of mdr1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp Hematol. 2011;39(5):558–69.

    Article  CAS  PubMed  Google Scholar 

  110. Sui H, Fan Z, Li Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res. 2012;40(2):426–35.

    Article  CAS  PubMed  Google Scholar 

  111. Tomiyasu H, Watanabe M, Goto-Koshino Y, Fu**o Y, Ohno K, Sugano S, et al. Regulation of expression of ABCB1 and LRP genes by mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and its role in generation of side population cells in canine lymphoma cell lines. Leuk Lymphoma. 2013;54(6):1309–15.

    Article  CAS  PubMed  Google Scholar 

  112. Galoian K, Temple H, Galoyan A. mTORC1 inhibition and ECM–cell adhesion-independent drug resistance via PI3K–AKT and PI3K–RAS–MAPK feedback loops. Tumor biology. 2012;33(3):885–90.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  114. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007;282(2):1183–92.

    Article  CAS  PubMed  Google Scholar 

  115. Rodrigues C, Mósca AF, Martins AP, Nobre T, Prista C, Antunes F, et al. Rat aquaporin-5 is pH-gated induced by phosphorylation and is implicated in oxidative stress. Int J Mol Sci. 2016;17(12):2090.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rodrigues C, Pimpão C, Mósca AF, Coxixo AS, Lopes D, da Silva IV, et al. Human aquaporin-5 facilitates hydrogen peroxide permeation affecting adaption to oxidative stress and cancer cell migration. Cancers. 2019;11(7):932.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Prata C, Hrelia S, Fiorentini D. Peroxiporins in cancer. Int J Mol Sci. 2019;20(6):1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Čipak Gašparović A, Milković L, Rodrigues C, Mlinarić M, Soveral G. Peroxiporins are induced upon oxidative stress insult and are associated with oxidative stress resistance in colon cancer cell lines. Antioxidants. 2021;10(11):1856.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jablonski EM, Mattocks MA, Sokolov E, Koniaris LG, Hughes FM Jr, Fausto N, et al. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett. 2007;250(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  120. Yang B, Zhao D, Verkman A. Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem. 2006;281(24):16202–6.

    Article  CAS  PubMed  Google Scholar 

  121. Dong X, Wang Y, Zhou Y, Wen J, Wang S, Shen L. Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy. Cell death discovery. 2016;2(1):1–6.

    Article  Google Scholar 

  122. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: sha** the tumor microenvironment and therapeutic response. Trends Mol Med. 2013;19(7):428–46.

    Article  CAS  PubMed  Google Scholar 

  123. Ozpolat B, Benbrook DM. Targeting autophagy in cancer management–strategies and developments. Cancer Manag Resh. 2015;7:291.

    Article  CAS  Google Scholar 

  124. Ojha R, Bhattacharyya S, Singh SK. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. BioRes Open Access. 2015;4(1):97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li X, Pei B, Wang H, Tang C, Zhu W, ** F. Effect of AQP-5 silencing by siRNA interference on chemosensitivity of breast cancer cells. Onco Targets Ther. 2018;11:3359.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Imaizumi H, Ishibashi K, Takenoshita S, Ishida H. Aquaporin 1 expression is associated with response to adjuvant chemotherapy in stage II and III colorectal cancer. Oncol Lett. 2018;15(5):6450–6.

    PubMed  PubMed Central  Google Scholar 

  127. Chong W, Zhang H, Guo Z, Yang L, Shao Y, Liu X, et al. Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ. 2021;28(1):382–400.

    Article  CAS  PubMed  Google Scholar 

  128. Zhu Z, Jiao L, Li T, Wang H, Wei W, Qian H. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol Lett. 2018;16(2):2661–7.

    PubMed  PubMed Central  Google Scholar 

  129. Li J, Wang Z, Chong T, Chen H, Li H, Li G, et al. Over-expression of a poor prognostic marker in prostate cancer: AQP5 promotes cells growth and local invasion. World J Surg Oncol. 2014;12(1):1–9.

    Article  Google Scholar 

  130. Morrissey JJ, Mellnick VM, Luo J, Siegel MJ, Figenshau RS, Bhayani S, et al. Evaluation of urine aquaporin-1 and perilipin-2 concentrations as biomarkers to screen for renal cell carcinoma: a prospective cohort study. JAMA Oncol. 2015;1(2):204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Imrédi E, Tóth B, Doma V, Barbai T, Rásó E, Kenessey I, et al. Aquaporin 1 protein expression is associated with BRAF V600 mutation and adverse prognosis in cutaneous melanoma. Melanoma Res. 2016;26(3):254–60.

    Article  PubMed  Google Scholar 

  132. Shan T, Chen S, Chen X, Kong D, Lin W, Li W, et al. Impact of AQP-5 on the growth of colorectal cancer cells and the underlying mechanism. Int J Clin Exp Pathol. 2018;11(1):58–67.

    PubMed  PubMed Central  Google Scholar 

  133. Kang BW, Kim JG, Chae YS, Lee SJ, Sohn SK, Moon JH, et al. AQP1 expression and survival in patients with colon cancer. J Clin Oncol. 2014;32((15_suppl)):e14586.

    Article  Google Scholar 

  134. Gao C, Shen J, Yao L, **a Z, Liang X, Zhu R, et al. Low expression of AQP9 and its value in hepatocellular carcinoma. Transl Cancer Res. 2021;10(4):1826–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shan T, Zheng B, Chen X, Tao W, Erli J, Bai Y, et al. Expression of AQP5 in colorectal cancer and its relationship with clinical outcome. J **’an Jiaotong Univ (Medical Sciences). 2015;6:815–53.

    Google Scholar 

  136. Abdelrahman AE, Ibrahim DA, El-Azony A, Alnagar AA, Ibrahim A. ERCC1, PARP-1, and AQP1 as predictive biomarkers in colon cancer patients receiving adjuvant chemotherapy. Cancer Biomark. 2020;27:251–64.

    Article  CAS  PubMed  Google Scholar 

  137. Dou R, Deng Y, Huang L, Fu S, Tan S, Wang L, et al. Multi-microarray identifies lower AQP9 expression in adjuvant chemotherapy nonresponders with stage III colorectal cancer. Cancer Lett. 2013;336(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  138. Wang Y, Fan Y, Zheng C, Zhang X. Knockdown of AQP1 inhibits growth and invasion of human ovarian cancer cells. Mol Med Rep. 2017;16(4):5499–504.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang Q, Lin L, Li W, Lu G, Li X. MiR-223 inhibitor suppresses proliferation and induces apoptosis of thyroid cancer cells by down-regulating aquaporin-1. J Recept Signal Transduction. 2019;39(2):146–53.

    Article  Google Scholar 

  140. Nakhjavani M, Palethorpe HM, Tomita Y, Smith E, Price TJ, Yool AJ, et al. Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharmaceuticals. 2019;12(3):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pan X-Y, Guo H, Han J, Hao F, An Y, Xu Y, et al. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol. 2012;683(1–3):27–34.

    Article  CAS  PubMed  Google Scholar 

  142. Kong B, Zhao S, Kang X, Wang B. MicroRNA-133a-3p inhibits cell proliferation, migration and invasion in colorectal cancer by targeting AQP1. Oncol Lett. 2021;22(3):1–10.

    Article  Google Scholar 

  143. Kourghi M, Pei JV, De Ieso ML, Flynn G, Yool AJ. Bumetanide derivatives AqB007 and AqB011 selectively block the aquaporin-1 ion channel conductance and slow cancer cell migration. Mol Pharmacol. 2016;89(1):133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang X, Chen Y, Dong L, Shi B. Effect of selective inhibition of aquaporin 1 on chemotherapy sensitivity of J82 human bladder cancer cells. Oncol Lett. 2018;15(3):3864–9.

    PubMed  PubMed Central  Google Scholar 

  145. Bin K, Shi-Peng Z. Acetazolamide inhibits aquaporin-1 expression and colon cancer xenograft tumor growth. Hepatogastroenterology. 2011;58(110–111):1502–6.

    CAS  PubMed  Google Scholar 

  146. De Ieso ML, Pei JV, Nourmohammadi S, Smith E, Chow PH, Kourghi M, et al. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci Rep. 2019;9(1):12635.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fathizadeh H, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in lung cancer. Cell Biosci. 2019;9(1):1–8.

    Article  Google Scholar 

  148. Fathizadeh H, Hallajzadeh J, Asemi Z. Circular RNAs as diagnostic biomarker in pancreatic cancer. Pathol Res Pract. 2020;216(9):153075.

    Article  CAS  PubMed  Google Scholar 

  149. Jafari D, Noorbakhsh F, Delavari A, Tavakkoli-Bazzaz J, Farashi-Bonab S, Abdollahzadeh R, et al. Expression level of long noncoding RNA NKILAmiR103-miR107 inflammatory axis and its clinical significance as potential biomarker in patients with colorectal cancer. J Res Med Sci. 2020. https://doi.org/10.4103/jrms.JRMS_943_19.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chu Y, Wang X, Yu N, Li Y, Kan J. Long non-coding RNA FGD5-AS1/microRNA-133a-3p upregulates aquaporin 1 to decrease the inflammatory response in LPS-induced sepsis. Mol Med Rep. 2021;24(5):1–11.

    Article  Google Scholar 

  151. Nave M, Castro RE, Rodrigues CM, Casini A, Soveral G, Gaspar MM. Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells. Nanomedicine. 2016;11(14):1817–30.

    Article  CAS  PubMed  Google Scholar 

  152. Chen C, Ma T, Zhang C, Zhang H, Bai L, Kong L, et al. Down-regulation of aquaporin 5-mediated epithelial-mesenchymal transition and anti-metastatic effect by natural product Cairicoside E in colorectal cancer. Mol Carcinog. 2017;56(12):2692–705.

    Article  CAS  PubMed  Google Scholar 

  153. Li Q, Yang T, Li D, Ding F, Bai G, Wang W, et al. Knockdown of aquaporin-5 sensitizes colorectal cancer cells to 5-fluorouracil via inhibition of the Wnt–β-catenin signaling pathway. Biochem Cell Biol. 2018;96(5):572–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and wrote the manuscript. A.M. prepared the figures. E.S. reviewed and edited the manuscript. All authors have read the manuscript and agreed to publish it.

Corresponding author

Correspondence to Elahe Safari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi Mohammadabadi, M., Moazzeni, A., Jafarzadeh, L. et al. Aquaporins in colorectal cancer: exploring their role in tumorigenesis, metastasis, and drug response. Human Cell 37, 917–930 (2024). https://doi.org/10.1007/s13577-024-01078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01078-7

Keywords

Navigation