Log in

Inducing substances for chondrogenic differentiation of dental pulp stem cells in the conditioned medium of a novel chordoma cell line

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

We successfully established a chordoma cell line, designated TSK-CHO1, derived from the clival chordoma. Currently, there is only one skull base chordoma cell line, UM-chor1, freely available to researchers. The established TSK-CHO1 cells were neoplastic, exhibited pleomorphic features, and secreted brachyury, as revealed by immunocytochemical staining or ELISA of conditioned medium (CM). Cells also secreted SOX9, which enhanced brachyury production. The CM of TSK-CHO1 cells promoted the production of hyaluronic acid and type II collagen during differentiation of human dental pulp stem cells (DPSCs) into fibrocartilage cells. Culture of DPSC pellets in a growth medium supplemented with 10% CM of TSK-CHO1 cells for 2 weeks resulted in the induction of fibrocartilage tissue under normoxic conditions. Brachyury produced by TSK-CHO1 cells promoted the production of collagen type II, peculiar to cartilage, in a dose-dependent manner. The newly established skull base chordoma cell line, TSK-CHO1, is expected to be used for elucidating the pathogenesis of skull base chordoma and for investigating the mechanism underlying the production of fibrocartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fletcher C. World health organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. Lyon: IARC Press; 2002.

    Google Scholar 

  2. Smoll NR, Gautschi OP, Radovanovic I, Schaller K, Weber DC. Incidence and relative survival of chordomas: the standardized mortality ratio and the impact of chordomas on a population. Cancer. 2013;119:2029–37.

    Article  PubMed  Google Scholar 

  3. George B, Bresson D, Herman P, Froelich S. Chordomas: a review. Neurosurg Clin N Am. 2015;26:437–52.

    Article  PubMed  Google Scholar 

  4. Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta. 2014;1846:655–69.

    CAS  PubMed  Google Scholar 

  5. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001;12:1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Fung V, Calugaru V, Bolle S, Mammar H, Alapetite C, Maingon P, De Marzi L, Froelich S, Habrand JL, Dendale R, Noël G, Feuvret L. Proton beam therapy for skull base chordomas in 106 patients: a dose adaptive radiation protocol. Radiother Oncol. 2018;128:198–202.

    Article  PubMed  Google Scholar 

  7. Hayashi Y, Mizumoto M, Akutsu H, Takano S, Matsumura A, Okumura T, Kawabe T, Zenkoh J, Sakurai H, Tsuboi K. Hyperfractionated high-dose proton beam radiotherapy for clival chordomas after surgical removal. Br J Radiol. 2016;89:20151051.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, Jensen A, Ellerbrock M, Jäkel O, Haberer T, Herfarth K, Debus J. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer. 2014;120:3410–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu W, Mohyeldin A, Shah SR, ap Rhys CM, Johnson LF, Sedora-Roman NI, Kosztowski TA, Awad OA, McCarthy EF, Loeb DM, Wolinsky JP, Gokaslan ZL, Quiñones-Hinojosa A. Generation of chordoma cell line JHC7 and the identification of brachyury as a novel molecular target. J Neurosurg. 2011;115:760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinner B, Froehlich EV, Buerger K, Knausz H, Lohberger B, Scheipl S, Fischer C, Leithner A, Guelly C, Trajanoski S, Szuhai K, Liegl B. Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol. 2012;40:443–51.

    CAS  PubMed  Google Scholar 

  11. Liu X, Nielsen GP, Rosenberg AE, Waterman PR, Yang W, Choy E, Sassi S, Yang S, Harmon DC, Yang C, Schwab JH, Kobayashi E, Mankin HJ, Xavier R, Weissleder R, Duan Z, Hornicek FJ. Establishment and characterization of a novel chordoma cell line: CH22. J Orthop Res. 2012;30:1666–73.

    Article  CAS  PubMed  Google Scholar 

  12. Gellner V, Tomazic PV, Lohberger B, Meditz K, Heitzer E, Mokry M, Koele W, Leithner A, Liegl-Atzwanger B, Rinner B. Establishment of clival chordoma cell line MUG-CC1 and lymphoblastoid cells as a model for potential new treatment strategies [sci rep:24195]. Sci Rep. 2016;6:24195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Owen JH, Komarck CM, Wang AC, Abuzeid WM, Keep RF, McKean EL, Sullivan S, Fan X, Prince MEP. UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2018;128:701–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bosotti R, Magnaghi P, Di Bella S, Cozzi L, Cusi C, Bozzi F, Beltrami N, Carapezza G, Ballinari D, Amboldi N, Lupi R, Somaschini A, Raddrizzani L, Salom B, Galvani A, Stacchiotti S, Tamborini E, Isacchi A. Establishment and genomic characterization of the new chordoma cell line Chor-IN-1. Sci Rep. 2017;7:9226.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brüderlein S, Sommer JB, Meltzer PS, Li S, Osada T, Ng D, Möller P, Alcorta DA, Kelley MJ. Molecular characterization of putative chordoma cell lines. Sarcoma. 2010;2010:630129.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nibu Y, José-Edwards DS, Di Gregorio A. From notochord formation to hereditary chordoma: the many roles of brachyury. BioMed Res Int. 2013;2013:826435.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vujovic S, Henderson S, Presneau N, Odell E, Jacques TS, Tirabosco R, Boshoff C, Flanagan AM. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209:157–65.

    Article  CAS  PubMed  Google Scholar 

  18. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, Goldstein AM, Parry DM, Kelley MJ. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41:1176–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med. 2015;8:344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jaffe HL. Tumors and tumorous conditions of the bones and joints. Acad Med. 1959;34:72.

    Article  Google Scholar 

  21. Casagrande L, Cordeiro MM, Nör SA, Nör JE. Dental pulp stem cells in regenerative dentistry. Odontology. 2011;99:1–7.

    Article  PubMed  Google Scholar 

  22. Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–23.

    Article  CAS  Google Scholar 

  23. Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG, Drexler HG, MacLeod RA, Sykes G, Kohara A, Nakamura Y, Elmore E, Nims RW, Alston-Roberts C, Barallon R, Los GV, Nardone RM, Price PJ, Steuer A, Thomson J, Masters JR, Kerrigan L. Match criteria for human cell line authentication: where do we draw the line? Int J Cancer. 2013;132:2510–9.

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe M, Ohyama A, Ishikawa H, Tanaka A. Three-dimensional bone formation including vascular networks derived from dental pulp stem cells in vitro. Hum Cell. 2019;32:114–24.

    Article  CAS  PubMed  Google Scholar 

  25. Fawcett DW. Bloom and Fawcett a textbook of histology. 12th ed. Oxford: Oxford University Press; 1994. p. 191.

    Google Scholar 

  26. Hara T, Akutsu H, Yamamoto T, Tanaka S, Yasuda M, Takano S, Kino H, Miyamoto H, Matsumura A. Combined endoscopic endonasal and transoral surgery for a chordoma in the whole clivus with marked caudal extension. Oper Neurosurg (Hagerstown). 2018;14:463–4.

    Article  Google Scholar 

  27. Yamaguchi T, Imada H, Iida S, Szuhai K. Notochordal tumors: an update on molecular pathology with therapeutic implications. Surg Pathol Clin. 2017;10:637–56.

    Article  PubMed  Google Scholar 

  28. DeComas AM, Penfornis P, Harris MR, Meyer MS, Pochampally RR. Derivation and characterization of an extra-axial chordoma cell line (EACH-1) from a scapular tumor. J Bone Jt Surg Am. 2010;92:1231–40.

    Article  Google Scholar 

  29. Kim JY, Lee J, Koh JS, Park MJ, Chang UK. Establishment and characterization of a chordoma cell line from the tissue of a patient with dedifferentiated-type chordoma. J Neurosurg Spine. 2016;25:626–35.

    Article  PubMed  Google Scholar 

  30. Scheil S, Brüderlein S, Liehr T, Starke H, Herms J, Schulte M, Möller P. Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosom Cancer. 2001;32:203–11.

    Article  CAS  PubMed  Google Scholar 

  31. Dutra EH, Lima A, Nanda R, Yadav SMHOB. PTH [1-34] induced differentiation and mineralization of mandibular condylar cartilage. Sci Rep. 2017;7:3226.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murabayashi D, Mochizuki M, Tamaki Y, Nakahara T. Practical methods for handling human periodontal ligament stem cells in serum-free and serum-containing culture conditions under hypoxia: implications for regenerative medicine. Hum Cell. 2017;30:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffmann A, Czichos S, Kaps C, Bächner D, Mayer H, Kurkalli BG, Zilberman Y, Turgeman G, Pelled G, Gross G, Gazit D. The T-box transcription factor brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci. 2002;115:769–81.

    Article  CAS  PubMed  Google Scholar 

  34. Uusitalo H, Hiltunen A, Ahonen M, Gao TJ, Lefebvre V, Harley V, Kähäri VM, Vuorio E. Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res. 2001;16:1837–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. 18K08987 to S.T. and no. 21K16625 to H.K.), the Japan Brain Foundation (to S.T.), and the Japanese Foundation for Multidisciplinary Treatment of Cancer (to S.T.).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyoshi Akutsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The study was approved by the Clinical Ethics Committee of the University of Tsukuba Hospital. Approval number is R01-232, H29-173, R01-178.

Informed consent

The informed consent was provided in writing to the patient and obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kino, H., Akutsu, H., Ishikawa, H. et al. Inducing substances for chondrogenic differentiation of dental pulp stem cells in the conditioned medium of a novel chordoma cell line. Human Cell 35, 745–755 (2022). https://doi.org/10.1007/s13577-021-00662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00662-5

Keywords

Navigation