Log in

Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Human adipose-derived stem cells (hADSCs) are potential adult stem cells source for cell therapy. But hADSCs with multi-passage or cryopreservation often revealed poor growth performance. The aim of our work was to improve the activity of poor post-thaw hADSCs by simple and effective means. We describe here a simple method based on commercially available silicone micro-wells for creating hADSCs spheroids to improve viability and neural differentiation potential on poor post-thaw hADSCs. The isolated hADSCs positively expresse d CD29, CD44, CD105, and negatively expressed CD34, CD45, HLA-DR by flow cytometry. Meanwhile, they had adipogenic and osteogenic differentiation capacity. The post-thaw and post-spheroid hADSCs from poor growth status hADSCs showed a marked increase in cell proliferation by CKK-8 analysis, cell cycle analysis and Ki67/P27 quantitative polymerase chain reaction (qPCR) analysis. They also displayed an increase viability of anti-apoptosis by annexin v and propidium iodide assays and mitochondrial membrane potential assays. After 3 days of neural induction, the neural differentiation potential of post-thaw and post-spheroid hADSCs could be enhanced by qPCR analysis and western blotting analysis. These results suggested that the spheroid formation could improve the viability and neural differentiation potential of bad growth status hADSCs, which is conducive to ADSCs research and cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abudusaimi A, Aihemaitijiang Y, Wang YH, et al. Adipose-derived stem cells enhance bone regeneration in vascular necrosis of the femoral head in the rabbit. J Int Med Res. 2011;39:1852–60.

    Article  CAS  PubMed  Google Scholar 

  2. Dong Y, Zhang Q, Li Y, et al. Enhancement of tendon-bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci. 2012;13:13605–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Liu S, Shao Y, Lin Q, et al. 7,8-Dihydroxy coumarin promotes chondrogenic differentiation of adipose-derived mesenchymal stem cells. J Int Med Res. 2013;41:82–96.

    Article  PubMed  Google Scholar 

  4. Tsai CC, Huang TF, Ma HL, et al. Isolation of mesenchymal stem cells from shoulder rotator cuff: a potential source for muscle and tendon repair. Cell Transpl. 2013;22:413–22.

    Article  Google Scholar 

  5. Constantin G, Marconi S, Rossi B, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem cells. 2009;27:2624–35.

    Article  CAS  PubMed  Google Scholar 

  6. Konno M, Hamabe A, Hasegawa S, et al. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ. 2013;55:309–18.

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Qu X, Zhao RC. Mesenchymal stem cells hold promise for regenerative medicine. Front Med. 2011;5:372–8.

    Article  PubMed  Google Scholar 

  8. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6:195–202.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Zhu X, Shi W, Tai W, et al. The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived mesenchymal stem cells. Cell Tissue Res. 2012;350:277–87.

    Article  CAS  PubMed  Google Scholar 

  10. McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem cells. 2006;24:1246–53.

    Article  CAS  PubMed  Google Scholar 

  11. Yoon IS, Chung W, Sung JH, et al. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. J Biosci Bioeng. 2011;112:402–8.

    Article  CAS  PubMed  Google Scholar 

  12. Santo VE, Duarte AR, Popa EG, et al. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release. 2012;162:19–27.

    Article  CAS  PubMed  Google Scholar 

  13. Bayati V, Sadeghi Y, Shokrgozar MA, et al. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell. 2011;43:359–66.

    Article  CAS  PubMed  Google Scholar 

  14. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  15. Harris LJ, Zhang P, Abdollahi H, et al. Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res. 2010;163:e105–12.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Baer PC, Doring C, Hansmann ML, et al. New insights into epithelial differentiation of human adipose-derived stem cells. J Tissue Eng Regen Med. 2013;7:271–8.

    Article  CAS  PubMed  Google Scholar 

  17. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.

    Article  PubMed  Google Scholar 

  18. Dicker A, Le Blanc K, Astrom G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308:283–90.

    Article  CAS  PubMed  Google Scholar 

  19. Locke M, Feisst V, Dunbar PR. Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem cells. 2011;29:404–11.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86.

    Article  PubMed  Google Scholar 

  21. Renzi S, Lombardo T, Dotti S, et al. Mesenchymal stromal cell cryopreservation. Biopreserv Biobank. 2012;10:276–81.

    Article  CAS  PubMed  Google Scholar 

  22. Freimark D, Sehl C, Weber C, et al. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology. 2011;63:67–75.

    Article  CAS  PubMed  Google Scholar 

  23. Freimark D, Pino-Grace P, Pohl S, et al. Use of encapsulated stem cells to overcome the bottleneck of cell availability for cell therapy approaches. Transfus Med Hemother. 2010;37:66–73.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wagh V, Meganathan K, Jagtap S, et al. Effects of cryopreservation on the transcriptome of human embryonic stem cell after thawing and culturing. Stem Cell Rev. 2011;7:506–17.

    Article  PubMed  Google Scholar 

  25. Stéphenne X, Najimi M, Sokal EM. Hepatocyte cryopreservation: is it time to change the strategy? World J Gastroenterol. 2010;16:1–14.

    PubMed Central  PubMed  Google Scholar 

  26. Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trend and beyond. Cell Tissue Res. 2013;352:123–31.

    Article  PubMed  Google Scholar 

  27. Garcion E, Halilagic A, Faissner A, et al. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131:3423–32.

    Article  CAS  PubMed  Google Scholar 

  28. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126:2409–18.

    CAS  PubMed  Google Scholar 

  29. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80:83–93.

    Article  CAS  PubMed  Google Scholar 

  30. Song X, Zhu CH, Doan C, et al. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 2002;296:1855–7.

    Article  CAS  PubMed  Google Scholar 

  31. Huang YC, Chan CC, Lin WT, et al. Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials. 2013;34:442–51.

    Article  CAS  PubMed  Google Scholar 

  32. Jun Y, Kang AR, Lee JS, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials. 2014;35:4815–26.

    Article  CAS  PubMed  Google Scholar 

  33. Rajanahalli P, Meyer K, Zhu L, et al. Conversion of mouse fibroblasts to sphere cells induced by AlbuMAXI-containing medium. Front Biosci (Elite Ed). 2012;4:1813–22.

    Article  Google Scholar 

  34. Guo Y, Liu Q, Yang Y, et al. The effects of ROCK inhibitor Y-27632 on injectable spheroids of bovine corneal endothelial cells. Cell Reprogram. 2015;17:77–87.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Dai Y, Shu J et al. Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell. 2015;47:39–48.

  36. Martinello T, Bronzini I, Maccatrozzo L, et al. Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci. 2011;91:18–24.

    Article  CAS  PubMed  Google Scholar 

  37. Vishnubalaji R, Al-Nbaheen M, Kadalmani B, et al. Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res. 2012;347:419–27.

    Article  PubMed  Google Scholar 

  38. Dosier CR, Erdman CP, Park JH, et al. Resveratrol effect on osteogenic differentiation of rat and human adipose derived stem cells in a 3-D culture environment. J Mech Behav Biomed. 2012;11:112–22.

    Article  CAS  Google Scholar 

  39. Chen TF, Wong YS. Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol. 2009;41:666–76.

    Article  CAS  PubMed  Google Scholar 

  40. Perelman A, Wachtel C, Cohen M, et al. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012;3:e403.

    Article  Google Scholar 

  41. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Jiang XH, Yu MK, et al. Switching from bone marrow-derived neurons to epithelial cells through dedifferentiation and translineage redifferentiation. Cell Biol Int. 2010;34:1075–83.

    Article  PubMed  Google Scholar 

  43. Yang XF, He X, He J, et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J Biomed Sci. 2011;18:59.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Behr B, Tang C, Germann G, et al. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem cells. 2011;29:286–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Unek G, Ozmen A, Mendilcioglu I, et al. The expression of cell cycle related proteins PCNA, Ki67, p27 and p57 in normal and preeclamptic human placentas. Tissue Cell. 2014;46:198–205.

    Article  CAS  PubMed  Google Scholar 

  46. Nam BM, Kim BY, Jo YH, et al. Effect of cryopreservation and cell passage number on cell preparations destined for autologous chondrocyte transplantation. Transplant Proc. 2014;46:1145–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull. 2011;100:137–55.

    Article  PubMed  Google Scholar 

  48. Colwell AS, Borud LJ. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2008;121:701–2.

    CAS  PubMed  Google Scholar 

  49. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32:48–55.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34:1178–85.

    CAS  PubMed  Google Scholar 

  51. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–27.

    Article  PubMed  Google Scholar 

  52. Minonzio G, Corazza M, Mariotta L, et al. Frozen adipose-derived mesenchymal stem cells maintain high capability to grow and differentiate. Cryobiology. 2014;69:211–6.

    Article  PubMed  Google Scholar 

  53. Rajagopal K, Chilbule SK, Madhuri V. Viability, proliferation and phenotype maintenance in cryopreserved human iliacapophyseal chondrocytes. Cell Tissue Bank. 2013;15:153–63.

    Article  PubMed  Google Scholar 

  54. Naaldijk Y, Staude M, Fedorova V, et al. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 2012;12:49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Chinnadurai R, Garcia MA, Sakurai Y, et al. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports. 2014;3:60–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Francois M, Copland IB, Yuan S, et al. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensin. Cytotherapy. 2012;14:147–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ragoonanan V, Hubel A, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Cryobiology. 2010;61:335–44.

    Article  CAS  PubMed  Google Scholar 

  58. Galipeau J. The mesenchymal stromal cell dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8.

    Article  PubMed  Google Scholar 

  59. Pollock K, Sumstad D, Kadidlo D, et al. Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy. 2015;17:38–45.

    Article  PubMed  Google Scholar 

  60. Yu G, Floyd ZE, Wu X, et al. Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol. 2011;702:17–27.

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez AM, Elabd C, Amri EZ, et al. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87:125–8.

    Article  CAS  PubMed  Google Scholar 

  62. Song X, Zhu CH, Doan C, et al. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 2002;296:1855–7.

    Article  CAS  PubMed  Google Scholar 

  63. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126:2409–18.

    CAS  PubMed  Google Scholar 

  64. Garcion E, Halilagic A, Faissner A, et al. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131:3423–32.

    Article  CAS  PubMed  Google Scholar 

  65. Bayoussef Z, Dixon JE, Stolnik S, et al. Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med. 2012;6:e61873.

    Article  Google Scholar 

  66. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3:1172–84.

    Article  CAS  PubMed  Google Scholar 

  67. Burridge PW, Thompson S, Millrod MA, et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE. 2011;6:e18293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Birenboim R, Markus A, Goldstein RS. Simple generation of neurons from human embryonic stem cells using agarose multiwall dishes. J Neurosci Methods. 2013;214:9–14.

    Article  PubMed  Google Scholar 

  69. Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8:486–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Su G, Zhao Y, Wei J, Han J, et al. The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials. 2013;34:3215–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank for the support from the National Natural Science Foundation of China (No. 81371689), collaborated Grant of HK-Macao-TW of Ministry of Science and Technology (2012DFH30060) and the Natural Science Foundation of Guangdong Province (S2013010013391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, S., Ji, Q. et al. Enhanced viability and neural differential potential in poor post-thaw hADSCs by agarose multi-well dishes and spheroid culture. Human Cell 28, 175–189 (2015). https://doi.org/10.1007/s13577-015-0116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-015-0116-4

Keywords

Navigation