Log in

bFGF and Activin A function to promote survival and proliferation of single iPS cells in conditioned half-exchange mTeSR1 medium

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Human induced pluripotent stem (iPS) cells can be well maintained by clonal growth. The pluripotent growth of single iPS cells is limited by low survival. To facilitate robust single iPS cells cultured in vitro, half-exchange mTeSR1 medium (HM), whole-exchange medium (WM) and iPS cell-derived conditioned medium (iPS-CM) culture were used. The effects of bFGF and Activin A on the growth of single iPS cells were explored. The dissociation and propagation of single iPS cells also included Accutase enzymatic isolation, Rho-associated protein kinase (ROCK) inhibitor Y27632 protection and high-density single-cell seeding (1 × 106 cells/well). CCK-8 assays demonstrated that the viability of clonal iPS cells in mTeSR1 medium and single iPS cells in HM, iPS-CM or WM supplemented with 100 ng/ml bFGF and 10 ng/ml Activin A was significantly higher than that in WM. Annexin v and propidium iodide (PI) assay, Calcein AM and EthD-III double staining also confirmed the similar results. ELISA assays showed that the levels of bFGF and Activin A of single iPS cells in HM and iPS-CM were higher than single iPS cells in WM. Meanwhile, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), quantitative Polymerase Chain Reaction (qPCR), Western Blotting (WB), Immunofluorescence (IF) and karyotype analysis revealed that HM culture was able to maintain undifferentiated markers of Nanog, Klf4, Sox2, Oct4, and did not affect the karyotype of iPS cells. Undifferentiated single iPS cells in HM displayed homogenized growth. These findings demonstrate that bFGF and Activin A are important for the survival and growth of single iPS cells. HM culture system combined Accutase, Y27632 and high-density single-cell seeding can facilitate short-term growth of single iPS cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  2. Kao CL, Tai LK, Chiou SH, et al. Resveratrol promotes osteogenic differentiation and protects against dexamethasone damage in murine induced pluripotent stem cells. Stem Cells Dev. 2010;19:247–58.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang DH, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.

    Article  CAS  PubMed  Google Scholar 

  4. Song Z, Cai J, Liu Y, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009;19:1233–42.

    Article  PubMed  Google Scholar 

  5. Menendez L, Yatskievych TA, Antin PB, et al. Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci USA. 2011;108:19240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hayashi R, Ishikawa Y, Ito M, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7:e45435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Buchholz DE, Pennington BO, Croze RH, et al. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2:384–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Christoforou N, Liau B, Chakraborty S, et al. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS One. 2013;8:e65963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Menendez L, Kulik MJ, Page AT, et al. Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc. 2013;8:203–12.

    Article  CAS  PubMed  Google Scholar 

  10. Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem. 2010;285:11227–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhao Z, Yu R, Yang J, et al. Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype. PLoS One. 2012;7:e33953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jun Y, Kang AR, Lee JS, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials. 2014;35:4815–26.

    Article  CAS  PubMed  Google Scholar 

  13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hartung O, Huo H, Daley GQ et al. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells. Curr Protoc Stem Cell Biol 2010; Chapter 1: Unit 1C.10.1-1C.10.15.

  15. Spits C, Mateizel I, Geens M, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. 2008;26:1361–3.

    Article  CAS  PubMed  Google Scholar 

  16. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bauwens CL, Peerani R, Niebruegge S, et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008;26:2300–10.

    Article  PubMed  Google Scholar 

  18. Liau B, Christoforou N, Leong KW, et al. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials. 2011;32:9180–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bajpai R, Lesperance J, Kim M, et al. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol Reprod Dev. 2008;75:818–27.

    Article  CAS  PubMed  Google Scholar 

  20. Katkov II, Kan NG, Cimadamore F, et al. DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int. 2011;2011:981606.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.

    Article  CAS  PubMed  Google Scholar 

  23. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 1998;94:339–52.

    Article  CAS  PubMed  Google Scholar 

  24. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.

    Article  CAS  PubMed  Google Scholar 

  25. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 1998;12:806–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pakzad M, Totonchi M, Taei A, et al. Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev. 2010;6:96–107.

    Article  CAS  PubMed  Google Scholar 

  27. Xu SY, Wu YM, Ji Z, et al. A modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol. 2012;30:803–10.

    Google Scholar 

  28. Neel S, Singla DK. Induced pluripotent stem (iPS) cells inhibit apoptosis and fibrosis in streptozotocin-induced diabetic rats. Mol Pharm. 2011;8:2350–7.

    Article  CAS  PubMed  Google Scholar 

  29. Li LF, Liu YY, Yang CT, et al. Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3 K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials. 2013;34:78–91.

    Article  PubMed  Google Scholar 

  30. Chen KG, Mallon BS, Johnson KR, et al. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation. Stem Cell Res. 2014;12:610–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen KG, Mallon BS, McKay RD, et al. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 2014;14:13–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kunova M, Matulka K, Eiselleova L, et al. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med. 2013;2:246–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol. 2006;24:344–50.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Wang D, Cao K, et al. Rat induced pluripotent stem cells protect H9C2 cells from cellular senescence via a paracrine mechanism. Cardiology. 2014;1:43–50.

    Article  Google Scholar 

  35. Maruotti J, Muñoz M, Degrelle SA, et al. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol Reprod Dev. 2012;7:461–77.

    Article  Google Scholar 

  36. Bruno E, Cooper RJ, Wilson EL, et al. Basic fibroblast growth factor promotes the proliferation of human megakaryocyte progenitor cells. Blood. 1993;2:430–5.

    Google Scholar 

  37. Luisi S, Florio P, Reis FM, et al. Expression and secretion of activin a: possible physiological and clinical implications. Eur J Endocrinol. 2001;3:225–36.

    Article  Google Scholar 

  38. **ao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells. 2006;24:1476–86.

    Article  CAS  PubMed  Google Scholar 

  39. Beattie GM, Lopez AD, Bucay N, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;4:489–95.

    Article  Google Scholar 

  40. Ma X, Li H, **n S, et al. Human amniotic fluid stem cells support undifferentiated propagation in a density dependent manner. Int J Clin Exp Pathol. 2014;8:4661–73.

    Google Scholar 

  41. Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;10:971–4.

    Article  Google Scholar 

  42. Vallier L, Touboul T, Brown S, et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells. 2009;11:2655–66.

    Article  Google Scholar 

  43. Tano K, Yasuda S, Kuroda T, et al. A novel in vitro method for detecting undifferentiated human pluripotentstem cells as impurities in cel therapy products using a highly efficient culture system. PLoS One. 2014;9:e110496.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Nishishita N, Shikamura M, Takenaka C, et al. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One. 2012;7:e38389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naïve pluripotent stem cells. Nature. 2013;504:282–6.

    Article  CAS  PubMed  Google Scholar 

  46. Osteil P, Tapponnier Y, Markossian S, et al. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open. 2013;2:613–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Honda A, Hatori M, Hirose M, et al. Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. J Biol Chem. 2013;288:26157–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Honsho K, Hirose M, Hatori M, et al. Naïve-like conversion enhances the difference in innate in vitro differentiation capacity between rabbit ES cells and iPS cells. J Reprod Dev. 2014;10:1839–18646.

    Google Scholar 

  49. Nishishita N, Shikamura M, Takenaka C, et al. Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One. 2012;7:e38389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81371689), collaborate grant for HK-Macao-TW of Ministry of Science and Technology (2012DFH30060) and the Natural Science Foundation of Guangdong Province (S2013010013391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansu Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Lian, R., Guo, Y. et al. bFGF and Activin A function to promote survival and proliferation of single iPS cells in conditioned half-exchange mTeSR1 medium. Human Cell 28, 122–132 (2015). https://doi.org/10.1007/s13577-015-0113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-015-0113-7

Keywords

Navigation