Log in

Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to deal with a new class of fractional evolutionary equations involving the time-fractional order integral and nonlinear weakly continuous operators. Exploiting the Rothe method and using a surjectivity result for weakly continuous operators, the solvability for the problem is established. The result is applied to prove the existence of solutions to time-fractional nonstationary incompressible Navier–Stokes equation and Navier–Stokes–Voigt equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Kim, J., Lee, J.: Coriolis effect on temporal decay rates of global solutions to the fractional Navier-Stokes equations. Math. Ann. 383(1–2), 259–289 (2022)

    Article  MATH  Google Scholar 

  2. Anh, C.T., Nguyet, T.M.: Optimal control of the instationary three dimensional Navier-Stokes-Voigt equations. Numerical Functional Analysis and Optimization 37(4), 415–439 (2016)

    Article  MATH  Google Scholar 

  3. Anh, C.T., Trang, P.T.: Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proc. Royal Soc. Edinburgh Sect. A 143, 223–251 (2013)

    Article  MATH  Google Scholar 

  4. Balachandran, K., Park, J.Y.: Nonlocal Cauchy problem for abstract fractional semilinear evolution equations. Nonlinear Analysis 71, 4471–4475 (2009)

    Article  MATH  Google Scholar 

  5. Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Analysis 72, 4587–4593 (2010)

    Article  MATH  Google Scholar 

  6. Carstensen, C., Gwinner, J.: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann. Mat. Pura Appl. 177, 363–394 (1999)

    Article  MATH  Google Scholar 

  7. Carvalho-Neto, P.M.D., Planas, G.: Mild solutions to the time fractional Navier-Stokes equations in \(\mathbb{R} ^n\). Journal of Differential Equations 259(7), 2948–2980 (2015)

    Article  MATH  Google Scholar 

  8. Celebi, A.O., Kalantarov, V.K., Polat, M.: Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain. Applicable Analysis 88, 381–392 (2009)

    Article  MATH  Google Scholar 

  9. Contantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    Book  Google Scholar 

  10. Dudek, S., Kalita, P., Migórski, S.: Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions. Zeit. Ange. Math. Phys. 66(5), 2625–2646 (2015)

    Article  MATH  Google Scholar 

  11. Dudek, S., Kalita, P., Migórski, S.: Stationary Oberbeck-Boussinesq model of generalized Newtonian fluid governed by a system of multivalued partial differential equations. Applicable Analysis 96(13), 2192–2217 (2017)

    Article  MATH  Google Scholar 

  12. Francǔ, J.: Weakly continuous operators, Applications to differential equations. Application of Mathematics 39(1), 45–56 (1994)

    Article  MATH  Google Scholar 

  13. García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity 25, 905–930 (2012)

    Article  MATH  Google Scholar 

  14. Han, J.F., Migórski, S., Zeng, H.D.: Weak solvability of a fractional viscoelastic frictionless contact problem. Appl. Math. Comput. 303, 1–18 (2017)

    MATH  Google Scholar 

  15. Hernández, E., O’Regan, D., Balachandran, E.: On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Analysis 73, 3462–3471 (2010)

    Article  MATH  Google Scholar 

  16. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  17. Kalantarov, V.K., Titi, E.S.: Global attractor and determining modes for the 3D Navier-Stokes-Voight equations. Chin. Ann. Math. Ser. B 30, 697–714 (2009)

    Article  MATH  Google Scholar 

  18. Kalantarov, V.K., Titi, E.S.: Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 19, 133–152 (2009)

    Article  MATH  Google Scholar 

  19. Kačur, J.: Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80, B.G. Teubner, Leipzig (1985)

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elservier Science B.V., Amsterdam (2006)

  21. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Analysis 69, 2677–2682 (2008)

    Article  MATH  Google Scholar 

  22. Li, X.C., Yang, X.Y., Zhang, Y.H.: Error estimates of mixed finite element methods for time-fractional Navier-Stokes equations. J. Sci. Comput. 70, 500–515 (2017)

    Article  MATH  Google Scholar 

  23. Łukaszewicz, G., Kalita, P.: Navier–Stokes Equations, An Introduction with Applications. Advances in Mechanics and Mathematics 34, Springer, New York (2016)

  24. Peng, L., Debbouche, A., Zhou, Y.: Existence and approximations of solutions for time-fractional Navier-Stokes equations. Mathematical Methods in the Applied Sciences 41(18), 8973–8984 (2018)

    Article  MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  26. Roubic̆ek, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, Boston, Berlin (2005)

  27. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MATH  Google Scholar 

  28. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  29. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society (2001)

  30. Yue, G., Zhong, C.K.: Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight equations. Discrete. Cont. Dyna. Syst. Ser. B 16, 985–1002 (2011)

    MATH  Google Scholar 

  31. Zeng, B.: Feedback control for nonlinear evolutionary equations with applications. Nonlinear Analysis: Real World Applications 66, 103535 (2022)

    Article  MATH  Google Scholar 

  32. Zeng, B., Migórski, S.: Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications. Comput. Math. Appl. 75, 89–104 (2018)

    Article  MATH  Google Scholar 

  33. Zeng, S.D., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Communications in Nonlinear Science and Numerical Simulation 56, 34–48 (2018)

    Article  MATH  Google Scholar 

  34. Zhang, J., Wang, J.R.: Numerical analysis for Navier-Stokes equations with time fractional derivatives. Appl. Math. Comput. 336, 481–489 (2018)

    MATH  Google Scholar 

  35. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Company, Bei**g (2014)

    Book  MATH  Google Scholar 

  36. Zhou, Y., Peng, L.: On the time-fractional Navier-Stokes equations. Comput. Math. Appl. 73, 874–891 (2017)

    Article  MATH  Google Scholar 

  37. Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)

    Article  MATH  Google Scholar 

  38. Zou, G.A., Lv, G.Y., Wu, J.L.: Stochastic Navier-Stokes equations with Caputo derivative driven by fractional noises. J. Math. Anal. Appl. 461, 595–609 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the National Natural Science Foundation of China (No. 12201137), the Special Fund for Science and Technological Bases and Talents of Guangxi (No. GUIKE AD21220103) and the Start-up Project of Scientific Research on Introducing talents at school level in Guangxi Minzu University (No. 2019KJQD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Zeng.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, B. Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator. Fract Calc Appl Anal 26, 172–192 (2023). https://doi.org/10.1007/s13540-022-00125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00125-0

Keywords

Mathematics Subject Classification

Navigation