Log in

An eigenvalue problem in fractional h-discrete calculus

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove existence of solutions for an eigenvalue problem in the fractional h-discrete calculus. Dirichlet type boundary conditions are considered. Several properties for Green’s function of the associated problem are proven. A fixed point theorem in Cone theory is a main tool to obtain sufficient conditions on upper and lower bounds for eigenvalues of the boundary value problem so that the existence of positive solutions are guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atıcı, F.M., Dadashova, K., Jonnalagadda, J.: Linear fractional order \(h\)-difference equations. International Journal of Difference Equations (Special Issue Honoring Professor Johnny Henderson) 15(2), 281–300 (2020)

    MATH  Google Scholar 

  2. Atıcı, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Special Edition I(3), 12 pp. (2009)

  3. Atıcı, F.M., Chang, S., Jonnalagadda, J.: Grünwald-Letnikov fractional operators: From past to present. Fract. Differ. Calc. 11(1), 147–159 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bohner, M., Fewster-Young, N.: Discrete fractional boundary value problems and inequalities. Fract. Calc. Appl. Anal. 24(6), 1777–1796 (2021). https://doi.org/10.1515/fca-2021-0077

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabada, A., Aleksic, S., Tomovic, T. V., Dimitrijevic, S.: Existence of solutions of nonlinear and non-local fractional boundary value problems. Mediterr. J. Math. 16(5), Art. 119, 18 pp. (2019)

  7. Cabada, A., Dimitrov, N.: Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. Fract. Calc. Appl. Anal. 23(4), 980–995 (2020). https://doi.org/10.1515/fca-2020-0051

    Article  MathSciNet  MATH  Google Scholar 

  8. Eloe, P. W., Neugebauer, J. T.: Convolutions and Green’s functions for two families of boundary value problems for fractional differential equations. Electron. J. Differential Equations 2016, Art. 297, 13 pp. (2016)

  9. Erbe, L.H., Wang, H.: On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120(3), 743–748 (1994)

    Article  MathSciNet  Google Scholar 

  10. Erbe, L.H., Hu, S.C., Wang, H.: Multiple positive solutions of some boundary value problems. J. Math. Anal. Appl. 184(3), 640–648 (1994)

    Article  MathSciNet  Google Scholar 

  11. Grünwald, A.K.: Über “begrenzte’’ Derivetionen und deren Anwendung. Z. Angew. Math. Phys. 12, 441–480 (1867)

    Google Scholar 

  12. Guo, D., Laksmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, London (1988)

    Google Scholar 

  13. Henderson, J.: Positive solutions for nonlinear difference equations. Nonlinear Stud. 4(1), 29–36 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Henderson, J., Neugebauer, J.T.: Existence of local solutions for fractional difference equations with left focal boundary conditions. Fract. Calc. Appl. Anal. 24(1), 324–331 (2021). https://doi.org/10.1515/fca-2021-0014

    Article  MathSciNet  MATH  Google Scholar 

  15. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

  16. Letnikov, A.V.: Theory of differentiation with an arbitrary index. Matem. Sbornik 3, 1–68 (1868). ((in Russian))

    Google Scholar 

  17. Merdivenci, F.: Two positive solutions of a boundary value problem for difference equations. J. Differ. Equations Appl. 1(3), 263–270 (1995)

    Article  MathSciNet  Google Scholar 

  18. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons Inc, New York (1993)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. Samko, G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Atıcı.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atıcı, F.M., Jonnalagadda, J.M. An eigenvalue problem in fractional h-discrete calculus. Fract Calc Appl Anal 25, 630–647 (2022). https://doi.org/10.1007/s13540-022-00028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00028-0

Keywords

Mathematics Subject Classification

Navigation