Log in

Physical Insight into the Synergistic Enhancement of CAP Therapy Using Static Magnetic Field

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the last decades, to improve the CAP treatment efficiency, its biological effects in combination with other physical modalities have widely investigated. However, the physical insight into most of supposed synergistic effects remained elusive. In this regard, the synergetic effect of cold plasma and magnetic field has been used for different applications, especially due to considerable synergistic in biological media reactivity. In the present paper, using a 420 mT N42 magnet, the effect of the perpendicular external static magnetic field (SMF) on the cold atmospheric pressure plasma (CAP) characteristics, such as electron temperature and density, is investigated based on the optical emission spectroscopy, utilizing the Boltzmann plot method, Saha-Boltzmann equation, and Specair software simulation. Results showed that the rotational and electronic excitational temperatures experienced 100 K and 550 K increases in the presence of SMF, respectively. In contrast, the vibrational and translational temperatures remained constant. Moreover, electron temperature was estimated as 1.04 eV in the absence of SMF and increased up to 1.24 eV in the presence of SMF. In addition, the Saha-Boltzmann equation illustrated that the electron density increased in the presence of the additional SMF. The results of the present study indicated that the magnetic field could be an assistant to the cold plasma effect, beneficial in medical applications due to modifications in plasma temperature and electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. J. Izdebska-Podsiadły, Effect of plasma surface modification on print quality of biodegradable PLA films. Appl. Sci. 11, 8245 (2021). https://doi.org/10.3390/app11178245

    Article  Google Scholar 

  2. I. Plattfaut, M. Besser, A.L. Severing, E.K. Stürmer, C. Opländer, Plasma medicine and wound management: Evaluation of the antibacterial efficacy of a medically certified cold atmospheric argon plasma jet. Int. J. Antimicrob. Agents 57(5), (2021). https://doi.org/10.1016/j.ijantimicag.2021.106319

  3. R. Mehrabifard, H. Mehdian, M. Bakhshzadmahmodi, Effect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells. Pharm. Biomed. Res. 3(3), 12–16 (2017). https://doi.org/10.29252/pbr.3.3.12

    Article  Google Scholar 

  4. L. Xu, X. Yepez, B. Applegate, K.M. Keener, B. Tao, A.L. Garner, Penetration and microbial inactivation by high voltage atmospheric cold plasma in semi-solid material. Food Bioprocess Technol. 13(10), 1688–1702 (2020). https://doi.org/10.1007/s11947-020-02506-w

    Article  Google Scholar 

  5. H.M. Joh, H.R. Kang, T.H. Chung, S.J. Kim, Electrical and optical characterization of atmospheric-pressure helium plasma jets generated with a pin electrode: effects of the electrode material, ground ring electrode, and nozzle shape. IEEE Trans. Plasma Sci. 42(12), 3656–3667 (2014). https://doi.org/10.1109/TPS.2014.2332171

    Article  ADS  Google Scholar 

  6. X. Cheng, K. Rajjoub, A. Shashurin, D. Yan, J.H. Sherman, K. Bian, . . . M. Keidar, Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 38(1), 53–62 (2017). https://doi.org/10.1002/bem.22014

    Article  Google Scholar 

  7. D. **g, G. Shen, J. Cai, F. Li, J. Huang, Y. Wang, . . . E. Luo, Effects of 180 mT static magnetic fields on diabetic wound healing in rats. Bioelectromagnetics 31(8), 640–648 (2010)

    Article  Google Scholar 

  8. S. Brkovic, S. Postic, D. Ilic, Influence of the magnetic field on microorganisms in the oral cavity. J. Appl. Oral Sci. 23(2), 179–186 (2015)

    Article  Google Scholar 

  9. M. Sadri, P. Abdolmaleki, S. Abrun, B. Beiki, F.S. Samani, Static magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cell. Mol. Bioeng. 10(3), 249–262 (2017). https://doi.org/10.1007/s12195-017-0482-y

    Article  Google Scholar 

  10. S. Ghodbane, A. Lahbib, M. Sakly, H. Abdelmelek, Bioeffects of static magnetic fields: Oxidative stress, genotoxic effects, and cancer studies. Biomed. Res. Int. 2013, 1–12 (2013). https://doi.org/10.1155/2013/602987

    Article  Google Scholar 

  11. J. Li, Y. Ma, N. Li, Y. Cao, Y. Zhu, Natural static magnetic field-induced apoptosis in liver cancer cell. Electromagn. Biol. Med. 33(1), 47–50 (2014)

    Article  Google Scholar 

  12. J. Dobson, Cancer therapy: Death by magnetism. Nat. Mater. 11(12), 1006 (2012)

    Article  ADS  Google Scholar 

  13. C. Liu, T. Kumakura, K. Ishikawa, H. Hashizume, Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function. (n.d.). https://doi.org/10.1088/0963-0252/25/6/065005

  14. H. Xu, S. Guo, H. Zhang, D. Liu, K. **e, Response of reactive species generation and biological inactivation to electromagnetically assisted cold plasma jets. Phys. Plasmas 28(12), 123521 (2021). https://doi.org/10.1063/5.0072955

    Article  ADS  Google Scholar 

  15. M.A. Mackinder, K. Wang, B. Zheng, M. Shrestha, Q.H. Fan, Magnetic field enhanced cold plasma sterilization. Clin. Plasma Med. 17–18, 100092 (2020). https://doi.org/10.1016/j.cpme.2019.100092

    Article  Google Scholar 

  16. H. Xu, S. Guo, H. Zhang, K. **e, External axial magnetic field enhances discharge and water treatment of cold plasma jets. Appl. Phys. Lett. 119(5), 054102 (2021). https://doi.org/10.1063/5.0055419

    Article  ADS  Google Scholar 

  17. H. Xu, L. Quan, Y. Liu, H. Zhang, M. Shao, K. **e, Effect of external E × E and E × B configurations on an atmospheric-pressure plasma jet and plasma-activated water : Experiments and simulations Effect of external E 3 E and E 3 B configurations on an atmospheric-pressure plasma jet and plasma-activated w. 073503 (2022). https://doi.org/10.1063/5.0087947

  18. R. Mehrabifard, H. Mehdian, K. Hajisharifi, E. Amini, Improving cold atmospheric pressure plasma efficacy on breast cancer cells control-ability and mortality using vitamin C and static magnetic field. Plasma Chem. Plasma Process. 40(2), 511–526 (2020). https://doi.org/10.1007/s11090-019-10050-5

    Article  Google Scholar 

  19. M. Keidar, X. Cheng, A. Shashurin, . . . -U. P. A. 15, & 2018, undefined, System and method for magnetically mediated plasma treatment of cancer with enhanced selectivity. Google Patents (2016, June 28). Retrieved from https://patents.google.com/patent/US20180193093A1/en

  20. H.R. Griem, Principles of plasma spectroscopy. Princ. Plasma Spectrosc. (1997). https://doi.org/10.1017/cbo9780511524578

    Article  ADS  Google Scholar 

  21. J.L. Walsh, M.G. Kong, Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl. Phys. Lett. 93(11), 111501 (2008). https://doi.org/10.1063/1.2982497

    Article  ADS  Google Scholar 

  22. G. Herzberg, S. Mrozowski, Molecular spectra and molecular structure. I. Spectra of diatomic molecules. Am. J. Phys. 19(6), 390–391 (1951). https://doi.org/10.1119/1.1932852

    Article  ADS  Google Scholar 

  23. P. Bruggeman, D. Schram, M.Á. González, R. Rego, M.G. Kong, C. Leys, Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci. Technol. 18(2), 025017 (2009). https://doi.org/10.1088/0963-0252/18/2/025017

    Article  ADS  Google Scholar 

  24. H.R. Griem, Validity of local thermal equilibrium in plasma spectroscopy. Phys. Rev. 131(3), 1170 (1963). https://doi.org/10.1103/PhysRev.131.1170

    Article  ADS  Google Scholar 

  25. N. Ohno, M.A. Razzak, H. Ukai, S. Takamura, Y. Uesugi, Validity of electron temperature measurement by using Boltzmann plot method in radio frequency inductive discharge in the atmospheric pressure range. Plasma Fusion Res. 1, 028–028 (2006). https://doi.org/10.1585/pfr.1.028

    Article  ADS  Google Scholar 

  26. V. Léveillé, S. Coulombe, Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species. Plasma Sources Sci. Technol. 14(3), 467–476 (2005). https://doi.org/10.1088/0963-0252/14/3/008

    Article  ADS  Google Scholar 

  27. Z. Anjum, M. Younus, N.U. Rehman, Evolution of plasma parameters in capacitively coupled He-O2/Ar mixture plasma generated at low pressure using 13.56 MHz generator. Phys. Scr. 95(4) (2020). https://doi.org/10.1088/1402-4896/ab687f

  28. S.S. Fatima, N.U. Rehman, M. Younus, I. Ahmad, Optical characterization of atmospheric-pressure plasma needle. Contrib. Plasma Phys. 57(9), 387–394 (2017). https://doi.org/10.1002/ctpp.201700058

    Article  ADS  Google Scholar 

  29. F. Khan, N.U. Rehman, S. Naseer, M.A. Naveed, A. Qayyum, N.A. Khattak, M. Zakaullah, Diagnostic of 13.56 MHz RF sustained Ar–N2 plasma by optical emission spectroscopy. Eur. Phys. Appl. Phys. 184(3), 177–184 (2006)

  30. F. Sohbatzadeh, O. Samadi, S.N. Siadati, G.R. Etaati, E. Asadi, R. Safari, Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates. Appl. Phys. A Mater. Sci. Process. 122(10) (2016). https://doi.org/10.1007/s00339-016-0414-z

  31. F.J. Gordillo-Vázquez, M. Camero, C. Gómez-Aleixandre, Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H 2/CH4 plasmas used for the synthesis of nanocarbon structures. Plasma Sources Sci. Technol. 15(1), 42–51 (2006). https://doi.org/10.1088/0963-0252/15/1/007

    Article  ADS  Google Scholar 

  32. S. Förster, C. Mohr, W. Viöl, Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surf. Coat. Technol. 200(1–4), 827–830 (2005). https://doi.org/10.1016/J.SURFCOAT.2005.02.217

    Article  Google Scholar 

  33. J.M. Gomba, C. D’Angelo, D. Bertuccelli, G. Bertuccelli, Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces. Spectrochim. Acta Part B 56(6), 695–705 (2001). https://doi.org/10.1016/S0584-8547(01)00208-7

    Article  Google Scholar 

  34. V.K. Unnikrishnan, K. Alti, V.B. Kartha, C. Santhosh, G.P. Gupta, B.M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions. Pramana J. Phys. 74(6), 983–993 (2010). https://doi.org/10.1007/s12043-010-0089-5

    Article  ADS  Google Scholar 

  35. F. Sohbatzadeh, R. Safari, G.R. Etaati, E. Asadi, S. Mirzanejhad, M.T. Hosseinnejad, . . . H. Bagheri, Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet. Superlattices Microstruct. 89, 231–241 (2016). https://doi.org/10.1016/j.spmi.2015.11.016

    Article  ADS  Google Scholar 

  36. F. Sohbatzadeh, S. Mirzanejhad, H. Mahdavi, Z. Omidi, Characterization of argon/air atmospheric pressure capacitively coupled radio frequency dielectric barrier discharge regarding parasitic capacitor at 13.56 MHz. J. Theor. Appl. Phys. 6(1) (2012). https://doi.org/10.1186/2251-7235-6-32

  37. X.M. Zhu, Y.K. Pu, Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas. Plasma Sources Sci. Technol. 17(2) (2008). https://doi.org/10.1088/0963-0252/17/2/024002

  38. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci. Technol. 12(2), 125–138 (2003). https://doi.org/10.1088/0963-0252/12/2/301

    Article  ADS  Google Scholar 

  39. S.Y. Moon, W. Choe, A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas. Spectrochim. Acta Part B At. Spectrosc. 58(2), 249–257 (2003). https://doi.org/10.1016/S0584-8547(02)00259-8

    Article  Google Scholar 

  40. J. Happold, P. Lindner, B. Roth, Spatially resolved temperature measurements in an atmospheric plasma torch using the A2 Σ+, v′ ≤ 0 → X 2 Π, v″ ≤ 0 OH band. J. Phys. D Appl. Phys. 39(16), 3615–3620 (2006). https://doi.org/10.1088/0022-3727/39/16/014

    Article  ADS  Google Scholar 

  41. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23(2) (2014). https://doi.org/10.1088/0963-0252/23/2/023001

  42. P. Bruggeman, D.C. Schram, M.G. Kong, C. Leys, Is the rotational temperature of OH(A-X) for discharges in and in contact with liquids a good diagnostic for determining the gas temperature? Plasma Process. Polym. 6(11), 751–762 (2009). https://doi.org/10.1002/ppap.200950014

    Article  Google Scholar 

  43. K.P. Huber, G. Herzberg, Constants of diatomic molecules. Nature 138(3493), 8–689 (1979). https://doi.org/10.1007/978-1-4757-0961-2_2

    Article  Google Scholar 

  44. A.G. Gaydon, A.C. Egerton, The band spectrum of nitrogen: New singlet systems. Proc. R. Soc. London. Series A Math. Phys. Sci. 182(990), 286–301 (1944). https://doi.org/10.1098/rspa.1944.0005

    Article  ADS  Google Scholar 

  45. A. Lofthus, P.H. Krupenie, The spectrum of molecular nitrogen. J. Phys. Chem. Ref. Data 6(1), 113–307 (1977). https://doi.org/10.1063/1.555546

    Article  ADS  Google Scholar 

  46. D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci. Technol. 15(4), 818–827 (2006). https://doi.org/10.1088/0963-0252/15/4/027

    Article  Google Scholar 

  47. Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, . . . M. Morvová, Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J. Mol.r Spectrosc. 243(2), 194–201 (2007). https://doi.org/10.1016/j.jms.2007.03.001

    Article  ADS  Google Scholar 

  48. Park, C. (1985). Nonequilibrium Air Radiation (NEQAIR) Program : User’s manual. National Aeronautics and Space Administration. Ames . . . (July 1985). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Nonequilibrium+Air+Radiation+(+NEQAIR+)+Program+:+User+’+s+Manual#4

  49. F. Labelle, A. Durocher-Jean, L. Stafford, On the rotational-translational equilibrium in non-thermal argon plasmas at atmospheric pressure. Plasma Sources Sci. Technol. 30(3), (2021). https://doi.org/10.1088/1361-6595/abe91d

  50. M. Iwasaki, H. Inui, Y. Matsudaira, H. Kano, N. Yoshida, M. Ito, M. Hori, Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Appl. Phys. Lett. 92(8) (2008). https://doi.org/10.1063/1.2885084

  51. H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, M. Hori, Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase. Plasma Med. 1(3–4), 265–277 (2011). https://doi.org/10.1615/PlasmaMed.2012006275

    Article  Google Scholar 

  52. K. Torii, S. Yamada, K. Nakamura, H. Tanaka, H. Kajiyama, K. Tanahashi, . . . Y. Kodera, Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer 18(3), 635–643 (2015). https://doi.org/10.1007/s10120-014-0395-6

    Article  Google Scholar 

  53. S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, . . . M. Hori, Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100(11) (2012). https://doi.org/10.1063/1.3694928

  54. I. Yajima, M. Iida, M.Y. Kumasaka, Y. Omata, N. Ohgami, J. Chang, . . . M. Kato, Non-equilibrium atmospheric pressure plasmas modulate cell cycle-related gene expressions in melanocytic tumors of RET-transgenic mice. Exp Dermatol 23(6), 424–425 (2014). https://doi.org/10.1111/exd.12415

    Article  Google Scholar 

  55. A. Safi, S.H. Tavassoli, G. Cristoforetti, S. Legnaioli, V. Palleschi, F. Rezaei, E. Tognoni, Determination of excitation temperature in laser-induced plasmas using columnar density Saha-Boltzmann plot. J. Adv. Res. 18, 1–7 (2019). https://doi.org/10.1016/j.jare.2019.01.008

    Article  Google Scholar 

  56. J.A. Aguilera, C. Aragón, Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures. Appl. Surf. Sci. 197–198, 273–280 (2002). https://doi.org/10.1016/S0169-4332(02)00382-3

    Article  ADS  Google Scholar 

  57. M. Villagran-Muiz, H. Sobral, C.A. Rinaldi, I. Cabanillas-Vidosa, J.C. Ferrero, Optical emission and energy disposal characterization of the laser ablation process of CaF2, BaF2, and NaCl at 1064 nm. J. Appl. Phys. 104(10) (2008). https://doi.org/10.1063/1.3021352

  58. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasmaparticle interactions: still-challenging issues within the analytical plasma community. Appl. Spectrosc. 64(12) (2010). https://doi.org/10.1366/000370210793561691

  59. J. Ananthanarasimhan, R.K. Gangwar, P. Leelesh, P.S.N.S.R. Srikar, A.M. Shivapuji, L. Rao, Estimation of electron density and temperature in an argon rotating gliding arc using optical and electrical measurements. J. Appl. Phys. 129(22) (2021). https://doi.org/10.1063/5.0044014

  60. T.D. Holmes, R.H. Rothman, W.B. Zimmerman, Graph theory applied to plasma chemical reaction engineering. Plasma Chem. Plasma Process. 41(2), 531–557 (2021). https://doi.org/10.1007/s11090-021-10152-z

    Article  Google Scholar 

  61. M. Bacal, A.M. Bruneteau, W.G. Graham, G.W. Hamilton, M. Nachman, Pressure and electron temperature dependence of H- density in a hydrogen plasma. J. Appl. Phys. 52(3), 1247–1254 (1981). https://doi.org/10.1063/1.329746

    Article  ADS  Google Scholar 

  62. S. Iizuka, T. Koizumi, T. Takada, N. Sato, Effect of electron temperature on negative hydrogen ion production in a low-pressure Ar discharge plasma with methane. Appl. Phys. Lett. 63(12), 1619–1621 (1993). https://doi.org/10.1063/1.110714

    Article  ADS  Google Scholar 

  63. E. Karakas, V.M. Donnelly, D.J. Economou, Abrupt transitions in species number densities and plasma parameters in a CH3F/O2 inductively coupled plasma. Appl. Phys. Lett. 102(3) (2013). https://doi.org/10.1063/1.4789435

  64. Z.D. Kang, Y.K. Pu, Electron temperature control in inductively coupled nitrogen plasmas by adding argon/helium. Chin. Phys. Lett. 19(8), 1139–1140 (2002). https://doi.org/10.1088/0256-307X/19/8/333

    Article  ADS  Google Scholar 

  65. T.D. Nguyen, N. Sadeghi, Rotational and vibrational distributions of N2(C 3Πu) excited by state-selected Ar(3P2) and Ar(3P0) metastable atoms. Chem. Phys. 79(1), 41–55 (1983). https://doi.org/10.1016/0301-0104(83)85137-4

    Article  Google Scholar 

  66. I.V. Adamovich, T. Li, W.R. Lempert, Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2048) (2015). https://doi.org/10.1098/rsta.2014.0336

  67. S. Biabani, G. Foroutan, Energy balance and gas thermalization in a high power microwave discharge in mixtures. Int. J. Opt. Photonics 13(2), 155–170 (2019). https://doi.org/10.29252/ijop.13.2.155

    Article  Google Scholar 

  68. W. Yang, Q. Zhou, Q. Sun, Z. Dong, E. Yan, Vibrational-translational relaxation in nitrogen discharge plasmas: Master equation modeling and landau-teller model revisited. AIP Adv. 10(10) (2020). https://doi.org/10.1063/5.0021993

  69. Y. Liu, H. Yan, H. Guo, Z. Fan, Y. Wang, C. Ren, Experimental investigation on the repetitively nanosecond pulsed dielectric barrier discharge with the parallel magnetic field. Phys. Plasmas 25(2) (2018). https://doi.org/10.1063/1.5010089

  70. C.Y.T. Tschang, R. Bergert, S. Mitic, M. Thoma, Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water. J. Phys. D Appl. Phys. 53(21) (2020). https://doi.org/10.1088/1361-6463/ab78d6

Download references

Funding

This work was supported by Slovak Research and Development Agency APVV-22-0247 and Comenius University Grant UK/3032/2024.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: Ramin Mehrabifard; data collection: Ramin Mehrabifard and Zeinab Kabarkouhi; analysis and interpretation of results: Zeinab Kabarkouhi and Ramin Mehrabifard; draft manuscript preparation: Fatemeh Rezaei, Kamal Hajisharifi, and Hassan Mehdian. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Fatemeh Rezaei or Kamal Hajisharifi.

Ethics declarations

Ethical Approval

This research did not contain any studies involving animal or human participants, nor did it take place in any private or protected areas. No specific permissions were required for corresponding locations.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The authors affirm that this research did not contain any studies involving human participants, and no specific permissions were required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabifard, R., Kabarkouhi, Z., Rezaei, F. et al. Physical Insight into the Synergistic Enhancement of CAP Therapy Using Static Magnetic Field. Braz J Phys 54, 122 (2024). https://doi.org/10.1007/s13538-024-01501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01501-2

Keywords

Navigation