Log in

Effect of Mediator on the Auto Combustion Synthesis, Magnetic Properties, and Electron Density Distribution of Spinel Ferrite Mn0.05Zn0.95Fe2O4

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Single-phase spinel Mn0.05Zn0.95Fe2O4 was synthesised by auto combustion method using metal nitrates and Glycine via various mediators (a) Aloe vera, (b) ethylene glycol, and (c) egg white represented as (a) MZF-AV, (b) MZF-EG, and (c) MZF-EW respectively. The experimental characterisation was done using XRD, vibration sample magnetometer (VSM), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and UV–Visible spectrometer. The structural parameters and electron density distribution, hence bonding, were analysed using the computational techniques of Rietveld and the maximum entropy method (MEM). The estimated minimum crystallite size of the sample by x-ray method is 16 ± 0.72 nm for the sample grown via the Aloe vera. VSM results show superparamagnetism in MZF-AV was further confirmed by magnetization vs temperature with zero field cooled (ZFC)/field cooled (FC) protocol. The ZFC/FC curve reveals the blocking temperature of 57.7 K and single domain superparamagnetic particle size of 9.4 nm for the sample MZF-AV. The samples MZF-EG and MZF-EW show little ferromagnetism with small coercivity and retentivity. SEM results show hexagonal-shaped crystal formation for the sample grown via egg white, while others show non-spherical highly agglomerated particles. EDX results are convincing without any impurity addition. MEM electron density analysis favours superparamagnetism with maximum tetrahedral A–O and octahedral B–O covalent bonding. Electron density distribution analysis based on MEM shows a significant variation in type and strength of inter bonding between A–O, B–O, and super exchange bonding between A–A, A–B, and B–B.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7, 1 (2010)

    Article  Google Scholar 

  2. J. Rivas, M. Bañobre-López, Y. Piñeiro-Redondo, B. Rivas, M.A. López-Quintela, J. Magn. Magn. Mater. 324, 3499 (2012)

    Article  ADS  Google Scholar 

  3. D.D. Stueber, J. Villanova, I. Aponte, Z. **ao, V.L. Colvin, Pharmaceutics 13, 943 (2021)

    Article  Google Scholar 

  4. P. Yang, J. Sun, X. Zhang, P. Shang, Kexue Tongbao/Chinese. Sci. Bull. 64, 741 (2019)

    Google Scholar 

  5. S.U. Awan, S. Zainab, M.D. Khan, S. Rizwan, M.Z. Iqbal, SPR Nanosci. 6, 91 (2020)

    Article  Google Scholar 

  6. C. Reig, M.D. Cubells-Beltrán, D.R. Muñoz, Sensors 9, 7919 (2009)

    Article  ADS  Google Scholar 

  7. W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001)

    Article  ADS  Google Scholar 

  8. F. Assa, H. Jafarizadeh-Malmiri, H. Ajamein, H. Vaghari, N. Anarjan, O. Ahmadi, A. Berenjian, Crit. Rev. Biotechnol. 37, 492 (2017)

    Article  Google Scholar 

  9. A. Van de Walle, J.E. Perez, A. Abou-Hassan, M. Hémadi, N. Luciani, C. Wilhelm, Mater. Today. NANO 11, 100084 (2020)

    Google Scholar 

  10. J. Fidler, T. Schrefl, S. Hoefinger, M. Hajduga, J. Phys. Condens. Matter. 16, (2004)

  11. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  12. B.H. Kim, N. Lee, H. Kim, K. An, Y. Il Park, Y. Choi, K. Shin, Y. Lee, S.G. Kwon, H. Bin Na, J.G. Park, T.Y. Ahn, Y.W. Kim, W.K. Moon, S.H. Choi, T. Hyeon, J. Am. Chem. Soc. 133, 12624 (2011)

  13. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Magn. Magn. Mater. 349, 249 (2014)

    Article  ADS  Google Scholar 

  14. C. Simon, A. Blösser, M. Eckardt, H. Kurz, B. Weber, M. Zobel, R. Marschall, Zeitschrift Für Anorg. Und Allg. Chemie. 647, 2061 (2021)

    Google Scholar 

  15. X. Tang, X. Hou, L. Yao, S. Hu, X. Liu, L. **ang, Mater. Res. Bull. 57, 127 (2014)

    Article  Google Scholar 

  16. E. Hema, A. Manikandan, M. Gayathri, M. Durka, S. Arul Antony, B.R. Venkatraman, J. Nanosci. Nanotechnol. 16, 5929 (2016)

  17. Z. Zhang, W. Wang, Mater. Lett. 133, 212 (2014)

    Article  Google Scholar 

  18. Y.V. Knyazev, N.N. Shishkina, O.A. Bayukov, N.P. Kirik, L.A. Solovyov, A.M. Zhizhaev, E.V. Rabchevsky, A.G. Anshits, J. Struct. Chem. 60, 763 (2019)

    Article  Google Scholar 

  19. S. Kumar Dutta, M. Akhter, J. Ahmed, M. K. Amin, P. Kumar Dhar, 12, 4399 (2022)

  20. P.H. Borse, J.Y. Kim, J.S. Lee, K.T. Lim, E.D. Jeong, J.S. Bae, J.H. Yoon, S.M. Yu, H.G. Kim, J. Korean Phys. Soc. 61, 73 (2012)

    Article  ADS  Google Scholar 

  21. Y. Matsumoto, M. Omae, K. Sugiyama, E.I. Sato, J. Phys. Chem. 91, 577 (2002)

    Article  Google Scholar 

  22. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, S. Dalela, S. Kumar, Ceram. Int. 45, 5837 (2019)

    Article  Google Scholar 

  23. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, RSC Adv. 5, 2338 (2015)

    Article  ADS  Google Scholar 

  24. M. A. Khan, M. Javid Ur Rehman, K. Mahmood, I. Ali, M. Niaz Akhtar, G. Murtaza, I. Shakir, M. Farooq Warsi, Ceram. Int. 41, 2286 (2015)

  25. N. Kasapoǧlu, A. Baykal, Y. Köseoǧlu, M.S. Toprak, Scr. Mater. 57, 441 (2007)

    Article  Google Scholar 

  26. C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, Chem. Mater. 18, 3835 (2006)

    Article  Google Scholar 

  27. E. Ranjith Kumar, R. Jayaprakash, T. Prakash, J. Magn. Magn. Mater. 358359, 123 (2014)

  28. E. Ranjith Kumar, T. Arunkumar, T. Prakash, Superlattices Microstruct. 85, 530 (2015)

  29. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloys Compd. 514, 91 (2012)

    Article  Google Scholar 

  30. V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift Fur Krist. 229, 345 (2014)

    Google Scholar 

  31. S.F. Gull, G.J. Daniell, Nat. 272, 686 (1978)

    Article  ADS  Google Scholar 

  32. S. Israel, R. Saravanan, N. Srinivasan, R.K. Rajaram, J. Phys. Chem. Solids 64, 43 (2003)

    Article  ADS  Google Scholar 

  33. C. J. Gilmore, Urn:Issn:0108–7673 52, 561 (1996)

  34. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  35. T.J.B. Holland, S.A.T. Redfern, Mineral. Mag. 61, 65 (1997)

    Article  Google Scholar 

  36. A.D. Prasetya, M. Rifai, Mujamilah, H. Miyamoto, J. Phys. Conf. Ser. 1436, 012113 (2020)

  37. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Results Phys. 9, 628 (2018)

    Article  ADS  Google Scholar 

  38. H.S. Kim, N.G. Park, NPG Asia Mater. 12, 1 (2020)

    Article  ADS  Google Scholar 

  39. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Solid State Sci. 13, 539 (2011)

    Article  ADS  Google Scholar 

  40. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Phys. Status Solidi 209, 347 (2012)

    Article  ADS  Google Scholar 

  41. D. Fritsch, C. Ederer, Appl. Phys. Lett. 99, 1 (2011)

    Article  Google Scholar 

  42. D.D. Andhare, S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi, S.D. More, K.M. Jadhav, J. Phys. Conf. Ser. 1644, 012014 (2020)

    Article  Google Scholar 

  43. M. Thavarani, M.C. Robert, N. Pavithra, R. Saravanan, Y.B. Kannan, S.B. Prasath, J. Mater. Sci. Mater. Electron. 33, 4116–4131 (2022)

    Article  Google Scholar 

  44. T. Suneetha, S. Kundu, S.C. Kashyap, H.C. Gupta, T.K. Nath, J. Nanosci. Nanotechnol. 13, 270 (2013)

    Article  Google Scholar 

  45. C. Choodamani, G. P. Nagabhushana, S. Ashoka, B. Daruka Prasad, B. Rudraswamy, G. T. Chandrappa, J. Alloys Compd. 578, 103 (2013)

  46. V. Marghussian, Nano-Glass Ceram. 181 (2015)

  47. S.K. Tong, P.W. Chi, S.H. Kung, D.H. Wei, Sci. Rep. 8, 1 (2018)

    ADS  Google Scholar 

  48. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  49. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999)

    Article  Google Scholar 

  50. S. Saravanakumar, D. Sivaganesh, K.S.S. Ali, M.C. Robert, M.P. Rani, R. Chokkalingam, R. Saravanan, Phys. B Condens. Matter 545, 134 (2018)

    Article  ADS  Google Scholar 

  51. S.V. Meenakshi, R. Saravanan, N. Srinivasan, D. Dhayanithi, N.V. Giridharan, J. Alloys Compd. 888, 161491 (2021)

    Article  Google Scholar 

  52. R. Saravanan, M.C. Robert, J. Phys. Chem. Solids 70, 159 (2009)

    Article  ADS  Google Scholar 

  53. G. Gowri, R. Saravanan, N. Srinivasan, O.V. Saravanan, S. Sonai, Mater. Chem. Phys. 267, 124652 (2021)

    Article  Google Scholar 

  54. K. Momma, T. Ikeda, A.A. Belik, F. Izumi, Powder Diffr. 28, 184 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the research facilities, powder XRD, ZFC/FC magnetic studies and VSM, Instrumental Facilities, CIC, Madurai Kamaraj University for SEM and EDX, Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam for UV-Visible spectrophotometry studies. The authors sincerely thank the principal and management, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, for their constant support and encouragement of the research activities.

Author information

Authors and Affiliations

Authors

Contributions

M. Thavarani: Investigation, writing the original draft. M. Charles Robert: Supervision, Conceptualization, Methodology. S. Balaji Prasath: Executing graphical techniques, Resources, N. Pavithra: Data Curation, writing review and editing, P. Christuraj: Formal analysis and validation, S. Saravanakumar: Electronic artwork and editing.

Corresponding author

Correspondence to M. Charles Robert.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thavarani, M., Robert, M.C., Prasath, S.B. et al. Effect of Mediator on the Auto Combustion Synthesis, Magnetic Properties, and Electron Density Distribution of Spinel Ferrite Mn0.05Zn0.95Fe2O4. Braz J Phys 52, 177 (2022). https://doi.org/10.1007/s13538-022-01181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01181-w

Keywords

Navigation