Log in

A time-based single transmission-line readout with position multiplexing

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

We developed a time-based single-transmission-line readout method for time-of-flight positron emission tomography (PET) detectors. The 2D position of a silicon photomultiplier (SiPM) array was encoded in the upper and lower widths of a specially prepared L-shaped tag pulse followed by the original scintillation signal. A PET detector setup was configured using a 4 × 4 array of LSO crystals optically coupled one-to-one to a 4 × 4 SiPM array. Two pulse width modulator circuits were employed per SiPM anode signal channel and a total of 32 width-modulated digital pulses were summed and merged with a delayed common-cathode signal. The final output was analyzed using timestamps crossing two-level threshold voltages. All 16 crystals were clearly separated on a positioning map. The average energy and coincidence time resolutions were 15.0 ± 1.1% and 288.7 ± 29.3 ps after proper correction process, respectively. A 3D position decoding capability was also shown by the remarkable discrimination performance in a phoswich PET detector setup (LSO and LGSO), resulting from well-preserved scintillation signals. The proposed method enables a time-based single-channel readout with 3D gamma ray interaction position decoding capability without compromising on detector performance. This method provides gamma ray energy and arrival time information as well as 2D and depthwise interaction positions of the phoswich detectors through one channel readout. Thus, channels can be reduced by at least 4–5 times compared to typically employed charge-sharing-based position multiplexing method; this significantly reduces the burden of data acquisition on the PET system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee JS, et al. Geiger-mode avalanche photodiodes for PET/MRI. In: Iniewski K, editor., et al., Electronics for radiation detection. Boca Raton: CRC Press; 2010. p. 179–200.

    Google Scholar 

  2. Kwon SI, et al. Development of small-animal PET prototype using silicon photomultiplier (SiPM): initial results of phantom and animal imaging studies. J Nucl Med. 2011;52(4):572–9.

    Article  Google Scholar 

  3. Yamaya T, et al. A SiPM-based isotropic-3D PET detector X’tal cube with a three-dimensional array of 1 mm3 crystals. Phys Med Biol. 2011;56(21):6793.

    Article  Google Scholar 

  4. Roncali E, et al. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng. 2011;39(4):1358–77.

    Article  Google Scholar 

  5. Ferri A, et al. Performance of FBK high-density SiPM technology coupled to Ce:LYSO and Ce:GAGG for TOF-PET. Phys Med Biol. 2014;59(4):869.

    Article  Google Scholar 

  6. Casey M, et al. A next generation SiPM based PET/CT system with improved time and spatial resolution. J. Nucl. Med. 2017;58:1332S.

  7. Lee MS, et al. Prototype pre-clinical PET scanner with depth-of-interaction measurements using single-layer crystal array and single-ended readout. Phys Med Biol. 2017;62(10):3983.

    Article  Google Scholar 

  8. Hsu DF, et al. Studies of a next-generation silicon-photomultiplier–based time-of-flight PET/CT system. J Nucl Med. 2017;58(9):1511–8.

    Article  Google Scholar 

  9. Won JY, et al. Development and initial results of a brain PET insert for simultaneous 7-tesla PET/MRI using an FPGA-only signal digitization method. IEEE Trans Med Imaging. 2021;40(6):1579–90.

    Article  Google Scholar 

  10. Cates JW, et al. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements. Phys Med Biol. 2015;60(13):5141.

    Article  Google Scholar 

  11. Nemallapudi MV, et al. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce co-doped with Ca. Phys Med Biol. 2015;60(12):4635.

    Article  Google Scholar 

  12. Gundacker S, et al. Measurement of intrinsic rise times for various L (Y) SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys Med Biol. 2016;61(7):2802.

    Article  Google Scholar 

  13. Gundacker S, et al. State of the art timing in TOF-PET detectors with LuAG, GAGG and L (Y) SO scintillators of various sizes coupled to FBK-SiPMs. J Instrum. 2016;11(08):P08008.

    Article  Google Scholar 

  14. Brunner SE, et al. BGO as a hybrid scintillator/Cherenkov radiator for cost-effective time-of-flight PET. Phys Med Biol. 2017;62(11):4421.

    Article  Google Scholar 

  15. Cates JW, et al. Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise. Phys Med Biol. 2018;63(18):185022.

    Article  Google Scholar 

  16. Dey S, et al. A CMOS ASIC design for SiPM arrays. In: IEEE nuclear science symposium conference record. 2011. p. 732–737.

  17. Dolinsky S, et al. Timing resolution performance comparison for fast and standard outputs of SensL SiPM. In: 2013 IEEE nuclear science symposium and medical imaging conference. NSS/MIC; 2013. pp 1–6.

  18. Brunner SE, et al. A comprehensive characterization of the time resolution of the Philips digital photon counter. J Instrum. 2016;11(11):P11004.

    Article  Google Scholar 

  19. Yoshino M, et al. Development and performance evaluation of time-over-threshold based digital PET (TODPET2) scanner using SiPM/Ce: GAGG-arrays for non-invasive measurement of blood RI concentrations. J Instrum. 2017;12(02):C02028.

    Article  Google Scholar 

  20. Chen Y, et al. DIET: a multi-channel SiPM readout ASIC for TOF-PET with individual energy and timing digitizer. J Instrum. 2018;13(07):07023.

    Article  Google Scholar 

  21. Shimazoe K, et al. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2020;954:161499.

    Article  Google Scholar 

  22. Olcott PD, et al. Compact readout electronics for position sensitive photomultiplier tubes. IEEE Trans Nucl Sci. 2005;52(1):21–7.

    Article  Google Scholar 

  23. Popov V, et al. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2006;567(1):319–22.

    Article  Google Scholar 

  24. Ito M, et al. Continuous depth-of-interaction measurement in a single-layer pixelated crystal array using a single-ended readout. Phys Med Biol. 2013;58(5):1269.

    Article  Google Scholar 

  25. Dey S, et al. A row-column summing readout architecture for SiPM based PET imaging systems. In: 2013 IEEE nuclear science symposium and medical imaging conference. NSS/MIC; 2013. pp. 1–5.

  26. Kwon SI, et al. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2014;761:39–45.

    Article  Google Scholar 

  27. Stolin AV, et al. Evaluation of imaging modules based on SensL array SB-8 for nuclear medicine applications. IEEE Trans Nucl Sci. 2014;61(5):2433–8.

    Article  Google Scholar 

  28. Siegel S, et al. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans Nucl Sci. 1996;43(3):1634–41.

    Article  Google Scholar 

  29. Goertzen AL, et al. Design and performance of a resistor multiplexing readout circuit for a SiPM detector. IEEE Trans Nucl Sci. 2013;60(3):1541–9.

    Article  Google Scholar 

  30. Ko GB, et al. Development of a front-end analog circuit for multi-channel SiPM readout and performance verification for various PET detector designs. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2013;703:38–44.

    Article  Google Scholar 

  31. Downie E, et al. Investigation of analog charge multiplexing schemes for SiPM based PET block detectors. Phys Med Biol. 2013;58(11):3943.

    Article  Google Scholar 

  32. Olcott PD, et al. Cross-strip multiplexed electro-optical coupled scintillation detector for integrated PET/MRI. IEEE Trans Nucl Sci. 2013;60(5):3198–204.

    Article  Google Scholar 

  33. Powolny F, et al. A novel time-based readout scheme for a combined PET-CT detector using APDs. IEEE Trans Nucl Sci. 2008;55(5):2465–74.

    Article  Google Scholar 

  34. Orita T, et al. A new pulse width signal processing with delay-line and non-linear circuit (for ToT). Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2011;648:S24–7.

    Article  Google Scholar 

  35. Olcott PD, et al. Pulse width modulation: a novel readout scheme for high energy photon detection. In: 2008 IEEE nuclear science symposium conference record. 2008. pp. 4530–4535.

  36. Schmand M, et al. Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45(6):3000–6.

    Article  Google Scholar 

  37. Pepin CM, et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci. 2004;51(3):789–95.

    Article  Google Scholar 

  38. Schmall JP, et al. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI. Phys Med Biol. 2015;60(9):3549.

    Article  Google Scholar 

  39. Yamamoto S, et al. Timing performance measurements of Si-PM-based LGSO phoswich detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2016;821:101–8.

    Article  Google Scholar 

  40. Fujiwara T, et al. Multi-level time-over-threshold method for energy resolving multi-channel systems. IEEE Trans Nucl Sci. 2010;57(5):2545–8.

    Article  Google Scholar 

  41. Parl C, et al. Fast charge to pulse width converter for monolith PET detector. IEEE Trans Nucl Sci. 2012;59(5):1809–14.

    Article  Google Scholar 

  42. Shimazoe K, et al. Dynamic time over threshold method. IEEE Trans Nucl Sci. 2012;59(6):3213–7.

    Article  Google Scholar 

  43. Bieniosek MF, et al. Compact pulse width modulation circuitry for silicon photomultiplier readout. Phys Med Biol. 2013;58(15):5049.

    Article  Google Scholar 

  44. Grant AM, et al. A new dual threshold time-over-threshold circuit for fast timing in PET. Phys Med Biol. 2014;59(13):3421.

    Article  Google Scholar 

  45. Yonggang W, et al. A linear time-over-threshold digitizing scheme and its 64-channel DAQ prototype design on FPGA for a continuous crystal PET detector. IEEE Trans Nucl Sci. 2014;61(1):99–106.

    Article  Google Scholar 

  46. Ko GB, et al. Time-based signal sampling using sawtooth-shaped threshold. Phys Med Biol. 2019;64(12):125020.

    Article  Google Scholar 

  47. Ota R. Development of dual time-over-threshold method for estimation of scintillation decay time and energy. In: Proceedings of the second international symposium on radiation detectors and their uses. ISRD; 2018. p. 011012.

  48. Ko GB, et al. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET. Phys Med Biol. 2017;62(6):2194.

    Article  Google Scholar 

  49. **e S, et al. Methods to compensate the time walk errors in timing measurements for PET detectors. IEEE Trans Radiat Plasma Med Sci. 2020;4(5):555–62.

    Article  Google Scholar 

  50. Prout DL, et al. A digital phoswich detector using time-over-threshold for depth of interaction in PET. Phys Med Biol. 2020;65(24):245017.

    Article  Google Scholar 

  51. Du H, et al. Continuous depth-of-interaction encoding using phosphor-coated scintillators. Phys Med Biol. 2009;54(6):1757.

    Article  Google Scholar 

  52. Berg E, et al. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography. Med Phys. 2016;43(2):939–50.

    Article  Google Scholar 

  53. Han SK, et al. Simulation study of side-by-side phoswich PET detector configuration for providing high spatial resolution of< 0.4 mm. In: 2018 Joint 10th international conference on soft computing and intelligent systems (SCIS) and 19th international symposium on advanced intelligent systems (ISIS). IEEE; 2018. pp. 346–349.

  54. Wei Q, et al. A side-by-side LYSO/GAGG phoswich detector aiming for SPECT imaging. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2020;953:163.

    Article  Google Scholar 

  55. Wei Q, et al. A position sensitive scintillation detector using a side-by-side GAGG-F/GAGG-T phoswich block. J Instrum. 2020;15(04):T04001.

    Article  Google Scholar 

  56. Won JY, et al. Dual-phase tapped-delay-line time-to-digital converter with on-the-fly calibration implemented in 40 nm FPGA. IEEE Trans Biomed Circuits Syst. 2015;10(1):231–42.

    Article  Google Scholar 

  57. Won JY, et al. Time-to-digital converter using a tuned-delay line evaluated in 28-, 40-, and 45-nm FPGAs. IEEE Trans Instrum Meas. 2016;65(7):1678–89.

    Article  Google Scholar 

  58. Won JY, et al. Highly integrated FPGA-only signal digitization method using single-ended memory interface input receivers for time-of-flight PET detectors. IEEE Trans Biomed Circuits Syst. 2018;12(6):1401–9.

    Article  Google Scholar 

  59. Won JY, et al. Comparator-less PET data acquisition system using single-ended memory interface input receivers of FPGA. Phys Med Biol. 2020;65(15):155.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0028, 9991007087) and grants from the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science and ICT (Grant No. 2020M2D9A1093989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Lee, J.S. A time-based single transmission-line readout with position multiplexing. Biomed. Eng. Lett. 12, 85–95 (2022). https://doi.org/10.1007/s13534-022-00215-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-022-00215-1

Keywords

Navigation