Log in

Increase of glycogen storage by sodium arsenite in rat cortical astrocytes through glycogen synthase activation and its association to toxicity

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The present study aimed primarily to evaluate the effect of sodium arsenite exposure on glucose metabolism includes glycogen accumulation on rat cortical astrocytes. Furthermore, cell death analysis was concurrently done to determine the toxic effect of sodium arsenite on astrocytes.

Methods

Rat cortical astrocytes derived from the cerebral cortices of neonatal Wistar rats were treated with sodium arsenite for 24 h. Glucose metabolism was evaluated by determining glucose uptake and glycogen accumulation using glucose uptake kit, and periodic acid–Schiff staining and transmission electron microscopy, respectively. Glycogen synthase (GS) and glycogen synthase kinase-3 (GSK3) were detected by Western blotting. The cell death analysis was assessed by propidium iodide staining.

Results

Sodium arsenite exposure at 25 μM for 24 h significantly increased glucose uptake and glycogen content in rat cortical astrocytes. Sodium arsenite exposure significantly increased GS expression but decreased a ratio of GS phosphorylation at serine 641 (inactive) to GS, suggesting that there may be an increase in activity of GS. Moreover, sodium arsenite caused an increase in inactive serine phosphorylation of GSK3, a kinase that phosphorylates and inhibits GS. These results suggested that sodium arsenite increased glycogen synthesis through GS activation mediated by inhibition of GSK3. On the other hand, sodium arsenite exposure at 25 μM caused some degree of cellular damage and a slight increase in cell death in rat astrocytes.

Conclusion

Sodium arsenite increased glycogen accumulation through GS activation and caused cell death in rat cortical astrocytes. These observations implicate that the enhancement of glycogen in rat astrocytes by sodium arsenite may be related to its toxicity. Hence, alteration of astrocyte glycogen metabolism may play a role in arsenic toxicity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4:3. https://doi.org/10.3389/fnene.2012.00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27(5):629–644. https://doi.org/10.1111/bpa.12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsui T, Omuro H, Liu Y-F, Soya M, Shima S, McEwen BS, Soya H (2017) Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci 114(24):6358–6363. https://doi.org/10.1073/pnas.1702739114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556. https://doi.org/10.1038/jcbfm.2012.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823. https://doi.org/10.1016/j.cell.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S (2018) Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 9(2):1–15. https://doi.org/10.1038/s41419-017-0190-5

    Article  CAS  Google Scholar 

  8. Huang L, Hollingsworth RI, Castellani R, Zipser B (2004) Accumulation of high-molecular-weight amylose in Alzheimer’s disease brains. Glycobiology 14(5):409–416. https://doi.org/10.1093/glycob/cwh042

    Article  CAS  PubMed  Google Scholar 

  9. Byman E, Schultz N, Blom AM, Wennström M (2019) Potential role for α-amylase in amyloid-β-induced astrocytic glycogenolysis and activation. J Alzheimer’s Dis 68(1):205–217. https://doi.org/10.3233/JAD-180997

    Article  CAS  Google Scholar 

  10. Turnbull J, Tiberia E, Striano P, Genton P, Carpenter S, Ackerley C, Minassian BA (2016) Lafora disease. Epileptic Disord 18(s2):S38–S62. https://doi.org/10.1684/epd.2016.0842

    Article  Google Scholar 

  11. Duran J, Gruart A, García-Rocha M, Delgado-García JM, Guinovart JJ (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23(12):3147–3156. https://doi.org/10.1093/hmg/ddu024

    Article  CAS  PubMed  Google Scholar 

  12. Lim JA, Li L, Raben N (2014) Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 6:177. https://doi.org/10.3389/fnagi.2014.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duran J, Tevy MF, Garcia-Rocha M, Calbó J, Milán M, Guinovart JJ (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4(8):719–729. https://doi.org/10.1002/emmm.201200241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai Y, Guo H, Fan Z, Zhang X, Wu D, Tang W, Gu T, Wang S, Yin A, Tao L (2020) Glycogenolysis is crucial for astrocytic glycogen accumulation and brain damage after reperfusion in ischemic stroke. IScience. https://doi.org/10.1016/j.isci.2020.101136

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta S, Gupta V (2013) Speciation and toxicity of arsenic: a human carcinogen. Res J Recent Sci 2:45–53. https://doi.org/10.1093/toxsci/kfr023

    Article  CAS  Google Scholar 

  16. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  17. Hong YS, Song KH, Chung JY (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47:245–252. https://doi.org/10.3961/jpmph.14.035

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tchounwou PB, Patlolla AK, Centeno J (2003) Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31(6):575–588. https://doi.org/10.1080/01926230390242007

    Article  CAS  PubMed  Google Scholar 

  19. Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80(4):303–314. https://doi.org/10.1016/j.aogh.2014.09.005

    Article  PubMed  Google Scholar 

  20. Kushwaha R, Mishra J, Tripathi S, Raza W, Mandrah K, Roy SK, Bandyopadhyay S (2018) Arsenic attenuates heparin-binding EGF-like growth factor/EGFR signaling that promotes matrix metalloprotease 9-dependent astrocyte damage in the develo** rat brain. Toxicol Sci 162(2):406–428. https://doi.org/10.1093/toxsci/kfx264

    Article  CAS  PubMed  Google Scholar 

  21. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601. https://doi.org/10.1093/toxsci/kfq266

    Article  CAS  PubMed  Google Scholar 

  22. Kushwaha R, Mishra J, Tripathi S, Khare P, Bandyopadhyay S (2018) Arsenic, cadmium, and lead like troglitazone trigger PPARγ-dependent poly (ADP-ribose) polymerase expression and subsequent apoptosis in rat brain astrocytes. Mol Neurobiol 55(3):2125–2149. https://doi.org/10.1007/s12035-017-0469-7

    Article  CAS  PubMed  Google Scholar 

  23. Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R (2014) Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 76:1–11. https://doi.org/10.1016/j.neuint.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  24. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156(6):885–898. https://doi.org/10.1111/j.1476-5381.2008.00085.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332. https://doi.org/10.1093/toxsci/kfr184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1(2):132–147. https://doi.org/10.1007/s40572-014-0012-1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wasserman GA, Liu X, LoIacono NJ, Kline J, Factor-Litvak P, van Geen A, Mey JL, Levy D, Abramson R, Schwartz A (2014) A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ Health 13(1):23. https://doi.org/10.1186/1476-069X-13-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bazuine M, Ouwens DM, Gomes de Mesquita DS, Maassen JA (2003) Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity. Eur J Biochem 270(19):3891–3903. https://doi.org/10.1046/j.1432-1033.2003.03771.x

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424–430. https://doi.org/10.1016/j.bbrc.2006.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maher F (1995) Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia. J Neurosci Res 42(4):459–469. https://doi.org/10.1002/jnr.490420404

    Article  CAS  PubMed  Google Scholar 

  31. Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 294(5):E889–E897. https://doi.org/10.1152/ajpendo.00150.2007

    Article  CAS  PubMed  Google Scholar 

  32. Kumar N, Shaw P, Razzokov J, Yusupov M, Attri P, Uhm HS, Choi EH, Bogaerts A (2018) Enhancement of cellular glucose uptake by reactive species: A promising approach for diabetes therapy. RSC Adv 8(18):9887–9894. https://doi.org/10.1039/c7ra13389h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26(4):457–462. https://doi.org/10.3892/ijmm_00000485

    Article  CAS  PubMed  Google Scholar 

  34. Negishi T, Takahashi M, Matsunaga Y, Hirano S, Tashiro T (2012) Diphenylarsinic acid increased the synthesis and release of neuroactive and vasoactive peptides in rat cerebellar astrocytes. J Neuropathol Exp Neurol 71(6):468–479. https://doi.org/10.1097/nen.0b013e3182561327

    Article  CAS  PubMed  Google Scholar 

  35. Gatica R, Bertinat R, Silva P, Kairath P, Slebe F, Pardo F, Famirez MJ, Slebe JC, Campistol JM, Nualart F, Caelles C, Yanes AJ (2015) Over-expression of muscle glycogen synthase in human diabetic nephropathy. Histochem Cell Biol 143(3):313–324. https://doi.org/10.1007/s00418-014-1290-2

    Article  CAS  PubMed  Google Scholar 

  36. Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. BBA Clin 5:85–100. https://doi.org/10.1016/j.bbacli.2016.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24(8):1571–1583. https://doi.org/10.1038/sj.emboj.7600633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR (2008) Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol Cell Biol 28(20):6314–6328. https://doi.org/10.1128/MCB.00763-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seo YH, Jung HJ, Shin HT, Kim YM, Yim H, Chung HY, Lim IK, Yoon G (2008) Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 6:894–990. https://doi.org/10.1111/j.1474-9726.2008.00436.x

    Article  CAS  Google Scholar 

  40. Huang H-S, Liu Z-M, Cheng Y-L (2011) Involvement of glycogen synthase kinase-3β in arsenic trioxide-induced p21 expression. Toxicol Sci 121(1):101–109. https://doi.org/10.1093/toxsci/kfr023

    Article  CAS  PubMed  Google Scholar 

  41. Kang J, Dai XS, Yu TB, Wen B, Yang ZW (2005) Glycogen accumulation in renal tubules, a key morphological change in the diabetic rat kidney. Acta Diabetol 42(2):110–116. https://doi.org/10.1007/s00592-005-0188-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Chulabhorn Research Institute, and the Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Higher Education, Science, Research and Innovation, Thailand. We thank Dr. James M. Dubbs for kindly proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyajit Watcharasit.

Ethics declarations

Conflict of interest

Selapoom Pairor, Benjaporn Homkajorn, Apichaya Niyomchan, Sumitra Suntararuks, Piyajit Watcharasit and Jutamaad Satayavivad declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 426 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pairor, S., Homkajorn, B., Niyomchan, A. et al. Increase of glycogen storage by sodium arsenite in rat cortical astrocytes through glycogen synthase activation and its association to toxicity. Toxicol. Environ. Health Sci. 13, 153–163 (2021). https://doi.org/10.1007/s13530-021-00094-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00094-6

Keywords

Navigation