Log in

Adsorptive removal of inhibitors from paddy straw hydrolysate using surfactant-modified bentonite clay for fermentative xylitol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Thermal acid hydrolysis of paddy straw is one of the most widely used pre-treatment methods to deal with its recalcitrant nature as well as utilize its abundant accessibility. However, the presence of inhibitory compounds (acetic acid, phenolics, and furan derivatives) in hemicellulose enriched spent liquor, produced during paddy straw hydrolysis, adversely affects its utilization for downstream xylitol production. Various detoxifying agents such as paddy straw biochar, lignite, activated charcoal, sodium bentonite (SB), and surfactant-modified organobentonite (CTAB@SB) were assessed for removal of inhibitors from the spent liquor. CTAB@SB performed as the best detoxifying adsorbent while retaining the maximum amount of xylose (16.23 gL−1). Concentration of acetic acid reduced from 4.95 gL−1 in concentrated and neutralized hydrolysate (control) to 0.023 gL−1 in CTAB@SB-detoxified hydrolysate. The furfural and hydroxymethylfurfural contents (with initial concentrations of 0.711 and 0.236 gL−1, respectively) were undetectable in the hydrolysate after CTAB@SB-assisted detoxification. Successful intercalation of bentonite layers with CTAB was confirmed using FTIR and XRD analysis. Specific surface area and pore size (31.73 m2 g−1, 4.45 nm, respectively) of CTAB@SB were revealed using BET analysis. The detoxified hydrolysate was subjected to fermentation using Candida tropicalis MTCC 6192 where xylitol yield and productivity were 0.59 g g−1 and 0.81 gL−1 h−1 , respectively. Thus, CTAB@SB-assisted detoxification was successfully established for inhibitor removal and integrated into paddy straw pre-treatment for downstream xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during this study are included in the manuscript.

Abbreviations

Ac:

Acid hydrolysate

Alk:

Alkaline hydrolysate

BET:

Brunauer-Emmett-Teller

C-Ac:

Concentrated acid hydrolysate

CN-Ac:

Concentrated and neutralized acid hydrolysate

CMC:

Carboxymethyl cellulose

CMCase:

Carboxymethyl cellulase

CTAB:

Cetyltrimethylammonium chloride

CTAB@SB:

Cetyltrimethylammonium chloride-modified sodium bentonite

CTAB@SB-H:

CTAB@SB post-hydrolysate detoxification

FPase:

Filter paper cellulase

FTIR:

Fourier transform infrared

MTCC:

Microbial Type Culture Collection

SB:

Sodium bentonite

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

YPD:

Yeast extract peptone dextrose

References

  1. Jamaldheen SB, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH (2022) A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 346:126591. https://doi.org/10.1016/j.biortech.2021.126591

    Article  Google Scholar 

  2. Kaur G, Taggar MS, Kalia A (2023) Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-27919-w

  3. Kumar N, Yadav A, Singh G, Singh A, Kumar P, Aggarwal NK (2023) Comparative study of ethanol production from sodium hydroxide pretreated rice straw residue using Saccharomyces cerevisiae and Zymomonas mobilis. Arch Microbiol 205:146. https://doi.org/10.1007/s00203-023-03468-1

    Article  Google Scholar 

  4. Li H, Wang C, Chen X, **ong L, Guo H, Yao S, Wang M, Huang C (2022) Anaerobic digestion of rice straw pretreatment liquor without detoxification for continuous biogas production using a 100 L internal circulation reactor. J Clean Prod 349:131450. https://doi.org/10.1016/j.jclepro.2022.131450

    Article  Google Scholar 

  5. Goodman BA (2020) Utilization of waste straw and husks from rice production: a review. J Bioresour Bioprod 5:143–162. https://doi.org/10.1016/j.jobab.2020.07.001

    Article  Google Scholar 

  6. Mirmohamadsadeghi S, Karimi K (2020) Recovery of silica from rice straw and husk. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 411–433. https://doi.org/10.1016/B978-0-444-64321-6.00021-5

    Chapter  Google Scholar 

  7. Hans M, Kumar S, Chandel AK, Polikarpov I (2019) A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochem 85:125–134. https://doi.org/10.1016/j.procbio.2019.06.019

    Article  Google Scholar 

  8. Singh S, Kaur D, Yadav SK, Krishania M (2021) Process scale-up of an efficient acid- catalyzed steam pretreatment of rice straw for xylitol production by C. tropicalis MTCC 6192. Bioresour Technol 320:124422. https://doi.org/10.1016/j.biortech.2020.124422

    Article  Google Scholar 

  9. Saravanan P, Ramesh S, Jaya N, Jabasingh SA (2021) Prospective evaluation of xylitol production using Dabaryomyces hansenii var hansenii, Pachysolen tannophilus, and Candida guillermondii with sustainable agricultural residues. Biomass Convers Biorefinery 13:2813–2831. https://doi.org/10.1007/s13399-020-01221-y

    Article  Google Scholar 

  10. Vardhan H, Sasmal S, Mohanty K (2023) Detoxification of areca nut acid hydrolysate and production of xylitol by Candida tropicalis (MTCC 6192). Prep Biochem Biotechnol:1–12. https://doi.org/10.1080/10826068.2023.2207093

  11. Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners – a review. J Food Sci Technol 51:611–621. https://doi.org/10.1007/s13197-011-0571-1

    Article  Google Scholar 

  12. Kaur S, Guleria P, Sidana A, Yadav SK (2022) Efficient process for xylitol production from nitric acid pretreated rice straw derived pentosans by Candida tropicalis GS18. Biomass Bioenergy 166:106618. https://doi.org/10.1016/j.biombioe.2022.106618

    Article  Google Scholar 

  13. Vallejos ME, Chade M, Mereles EB, Bengoechea DI, Brizuela JG, Felissia FE, Area MC (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prods 91:161–169. https://doi.org/10.1016/j.indcrop.2016.07.007

    Article  Google Scholar 

  14. Cortez DV, Mussatto SI, Roberto IC (2016) Improvement on D xylose to xylitol biotransformation by Candida guilliermondii using cells permeabilized with Triton X-100 and selected process conditions. Appl Biochem Biotechnol 180:969–979. https://doi.org/10.1007/s12010-016-2146-0

    Article  Google Scholar 

  15. de Albuquerque TL, da Silva Jr IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789. https://doi.org/10.1016/j.procbio.2014.07.010

    Article  Google Scholar 

  16. Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55:1514–1528. https://doi.org/10.1080/10408398.2012.702288

    Article  Google Scholar 

  17. Tsai YC, Du YQ, Yang CF (2021) Anaerobic biohydrogen production from biodetoxified rice straw hydrolysate. J Taiwan Inst Chem Eng 123:134–140. https://doi.org/10.1016/j.jtice.2021.05.034

    Article  Google Scholar 

  18. Guo H, Zhao Y, Chang JS, Lee DJ (2022) Inhibitor formation and detoxification during lignocellulose biorefinery: a review. Bioresour Technol 361:127666. https://doi.org/10.1016/j.biortech.2022.127666

    Article  Google Scholar 

  19. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  Google Scholar 

  20. Haroun BM, Nakhla G, Hafez H, Nasr F (2016) Impact of furfural on biohydrogen production from glucose and xylose in continuous-flow systems. Renew Energy 93:302–311. https://doi.org/10.1016/j.renene.2016.02.072

    Article  Google Scholar 

  21. Jofre FM, Hernández-Pérez AF, dos Santos JC, de Almeida Felipe MDG (2021) Use of dry yeast biomass as a new approach for detoxification of hemicellulosic hydrolysates aiming to xylitol production. Ind Crops Prod 170:113812. https://doi.org/10.1016/j.indcrop.2021.113812

    Article  Google Scholar 

  22. Du J, Liang J, Zhang X, Wang J, Li W, Song P, Feng X (2022) Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover. Bioresour Technol 343:126113. https://doi.org/10.1016/j.biortech.2021.126113

    Article  Google Scholar 

  23. Bedő S, Fehér A, Khunnonkwao P, Jantama K, Fehér C (2021) Optimized bioconversion of xylose derived from pre-treated crop residues into xylitol by using Candida boidinii. Agronomy 11:79. https://doi.org/10.3390/agronomy11010079

    Article  Google Scholar 

  24. Moraes EDJC, Silva DDV, Dussán KJ, Tesche LZ, Silva JBDA, Rai M, Felipe MDGA (2020) Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste Biomass Valor 11:1837–1849. https://doi.org/10.1007/s12649-018-0501-9

    Article  Google Scholar 

  25. Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M (2016) Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol 61:179–189. https://doi.org/10.1007/s12223-015-0420-0

    Article  Google Scholar 

  26. Hernández-Pérez AF, Costa IAL, Silva DDV, Dussán KJ, Villela TR, Canettieri EV, Carvalho JA, Soares Neto TG, Felipe MGA (2015) Biochemical conversion of sugarcane straw hemicellulosic hydrolysate supplemented with co-substrates for xylitol production. Bioresour Technol 200:1085–1088. https://doi.org/10.1016/j.biortech.2015.11.036

    Article  Google Scholar 

  27. Yuliana M, Sutrisno RJ, Hermanto S, Ismadji S, Wijaya CJ, Santoso SP, Soetaredjo FE, Ju YH (2020) Hydrophobic cetyltrimethylammonium bromide-pillared bentonite as an effective palm oil bleaching agent. ACS Omega 5:28844–28855. https://doi.org/10.1021/acsomega.0c04238

    Article  Google Scholar 

  28. Wang M, Rivenbark KJ, Phillips TD (2023) Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays. Environ Sci Pollut Res 30:11417–11430. https://doi.org/10.1007/s11356-022-22927-8

    Article  Google Scholar 

  29. Acikyildiz M, Gurses A, Yolcu H (2015) Synthesis of super hydrophobic clay by solution intercalation method from aqueous dispersions. Acta Physica Polonica A 127:1156–1160. https://doi.org/10.12693/APhysPolA.127.1156

    Article  Google Scholar 

  30. Verma N, Taggar MS, Kalia A, Kaur J, Javed M (2022) Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech 12:150–162. https://doi.org/10.1007/s13205-022-03211-5

    Article  Google Scholar 

  31. Bhatia SK, Gurav R, Cho DH, Kim B, Jung HJ, Kim SH, Yang YH (2023) Algal biochar mediated detoxification of plant biomass hydrolysate: mechanism study and valorization into polyhydroxyalkanoates. Bioresour Technol 370:128571. https://doi.org/10.1016/j.biortech.2022.128571

    Article  Google Scholar 

  32. Lee SC, Kim EH (2020) Affinity characteristics of neutral and anion exchange polymer resin adsorbents for main components in a simulated biomass hydrolysate. J Ind Eng Chem 91:223–230. https://doi.org/10.1016/j.jiec.2020.08.003

    Article  Google Scholar 

  33. Wang F, Dong Y, Cheng X, **e H, Song A, Zhang Z (2020) Effect of detoxification methods on ABE production from corn stover hydrolysate by Clostridium acetobutylicum CICC 8016. Biotechnol Appl Biochem 67:790–798. https://doi.org/10.1002/bab.1881

    Article  Google Scholar 

  34. Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S (2017) Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioeng 4:53. https://doi.org/10.3390/bioengineering4020053

    Article  Google Scholar 

  35. Zhang Y, **a C, Lu M, Tu M (2018) Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnol Biofuels 11:178. https://doi.org/10.1186/s13068-018-1182-0

    Article  Google Scholar 

  36. Bensid N, Zerdoum R, Hattab Z, Boutaleb Y, Bououdina M (2021) Intercalated organo-bentonite as efficient biosorbent for aromatic carboxylic acids from wastewater. J Mol Liq 337:116443. https://doi.org/10.1016/j.molliq.2021.116443

    Article  Google Scholar 

  37. García-Guzmán P, Medina-Torres L, Calderas F, Bernad-Bernad MJ, Gracia-Mora J, Mena B, Manero O (2018) Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release. Colloids Surf B 167:397–406. https://doi.org/10.1016/j.colsurfb.2018.04.020

    Article  Google Scholar 

  38. Blainski A, Lopes GC, de Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865. https://doi.org/10.3390/molecules18066852

    Article  Google Scholar 

  39. Arcaño YD, García ODV, Mandelli D, Carvalho WA, Pontes LAM (2020) Xylitol: A review on the progress and challenges of its production by chemical route. Catal Today 344:2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  Google Scholar 

  40. Araújo D, Costa T, Freitas F (2021) Biovalorization of lignocellulosic materials for xylitol production by the yeast Komagataella pastoris. Appl Sci 11:5516. https://doi.org/10.3390/app11125516

    Article  Google Scholar 

  41. ** T, **ng X, **e Y, Sun Y, Bian S, Liu L, Chen G, Wang X, Yu X, Su Y (2022) Evaluation of preparation and detoxification of hemicellulose hydrolysate for improved xylitol production from quinoa straw. Int J Mol Sci 24:516. https://doi.org/10.3390/ijms24010516

    Article  Google Scholar 

  42. Purkait MK, Haldar D (2021) Formation and detoxification of inhibitors. In: Lignocellulosic Biomass to Value-Added Products. Elsevier, Amsterdam, The Netherlands, pp 61–78

    Chapter  Google Scholar 

  43. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310. https://doi.org/10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  44. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Scheffersomyces stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. https://doi.org/10.1016/0141-0229(95)00237-5

    Article  Google Scholar 

  45. López-Linares JC, Ruiz E, Romero I, Castro E, Manzanares P (2020) Xylitol production from exhausted olive pomace by Candida boidinii. Appl Sci 10:6966. https://doi.org/10.3390/app10196966

    Article  Google Scholar 

  46. Mussatto SI, Roberto IC (2008) Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnol Prog 20:134–139. https://doi.org/10.1021/bp034207i

    Article  Google Scholar 

  47. Yu Y, Feng Y, Xu C, Liu J, Li D (2011) Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol 102:5123–5128. https://doi.org/10.1016/j.biortech.2011.01.067

    Article  Google Scholar 

  48. Kumar V, Krishania M, Preet Sandhu P, Ahluwalia V, Gnansounou E, Sangwan RS (2018) Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419. https://doi.org/10.1016/j.biortech.2017.11.039

    Article  Google Scholar 

  49. El-Dib FI, Tawfik FM, Eshaq G, Hefni HHH, ElMetwally AE (2016) Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays. Int J Biol Macromol 86:750–755. https://doi.org/10.1016/j.ijbiomac.2016.01.108

    Article  Google Scholar 

  50. Abdel Salam M, Abukhadra MR, Adlii A (2020) Insight into the adsorption and photocatalytic behaviors of an organo-bentonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr (VI) metal ions: application and mechanisms. ACS Omega 5:2766–2778. https://doi.org/10.1021/acsomega.9b03411

    Article  Google Scholar 

  51. Abukhadra MR, Shaban M, Sayed F, Saad I (2018) Efficient photocatalytic removal of safarnin-O dye pollutants from water under sunlight using synthetic bentonite/polyaniline@ Ni 2 O 3 photocatalyst of enhanced properties. Environ Sci Pollut Res 25:33264–33276. https://doi.org/10.1007/s11356-018-3270-x

    Article  Google Scholar 

  52. Shettigar RR, Misra NM, Patel K (2018) Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids. J Pet Explor Prod Technol 8:597–606. https://doi.org/10.1007/s13202-017-0357-8

    Article  Google Scholar 

  53. Mebrek OR, Derriche Z (2010) Removal of furfural from aqueous solutions by adsorption using organobentonite: isotherm and kinetic studies. Adsorpt Sci Technol 28:533–545

    Article  Google Scholar 

  54. Wang G, Zhang S, Hua Y, Su X, Ma S, Wang J, Tao Q, Wang Y, Komarneni S (2017) Phenol and/or Zn2+ adsorption by single-or dual-cation organomontmorillonites. Appl Clay Sci 140:1–9. https://doi.org/10.1016/j.clay.2017.01.023

    Article  Google Scholar 

  55. Li W, Bai Y, Ma Q, Chen W, Wu M, Ma H (2018) Polyacrylic acid/CTAB-bentonite coated filter paper: efficient and rapid removal of anionic and cationic dyes. Appl Surf Sci 458:903–909. https://doi.org/10.1016/j.apsusc.2018.07.169

    Article  Google Scholar 

  56. Wang J, Ma H, Yuan W, He W, Wang S, You J (2014) Synthesis and characterization of an inorganic/organic-modified bentonite and its application in methyl orange water treatment. Desalination Water Treat 52:7660–7672. https://doi.org/10.1080/19443994.2013.830690

    Article  Google Scholar 

  57. Huang Z, Li Y, Chen W, Shi J, Zhang N, Wang X, Li Z, Gao L, Zhang Y (2017) Modified bentonite adsorption of organic pollutants of dye wastewater. Mater Chem Phys 202:266–276. https://doi.org/10.1016/j.matchemphys.2017.09.028

    Article  Google Scholar 

  58. Guo M, Yang G, Zhang S, Zhang Y, Gao C, Zhang C, Zhang P (2020) Co-modification of bentonite by CTAB and silane and its performance in oil-based drilling mud. Clays Clay Miner 68:646–655. https://doi.org/10.1007/s42860-020-00093-7

    Article  Google Scholar 

  59. Asgari M, Sundararaj U (2018) Silane functionalization of sodium montmorillonite nanoclay: the effect of dispersing media on intercalation and chemical grafting. Appl Clay Sci 153:228–238. https://doi.org/10.1016/j.clay.2017.12.020

    Article  Google Scholar 

  60. Seliem MK, Komarneni S, Cho Y, Lim T, Shahien M, Khalil A, El-Gaid IA (2011) Organosilicas and organo-clay minerals as sorbents for toluene. Appl Clay Sci 52:184–189. https://doi.org/10.1016/j.clay.2011.02.024

    Article  Google Scholar 

  61. Caglar B, Afsin B, Tabak A, Eren E (2009) Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. J Chem Eng 149:242–248. https://doi.org/10.1016/j.cej.2008.10.028

    Article  Google Scholar 

  62. Resende RF, Leal PVB, Pereira DH, Papini RM, Magriotis ZM (2020) Removal of fatty acid by natural and modified bentonites: elucidation of adsorption mechanism. Colloids Surf A 605:125340. https://doi.org/10.1016/j.colsurfa.2020.125340

    Article  Google Scholar 

  63. Swain MR, Krishnan C (2015) Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis. Ind Crops Prod 77:1039–1046. https://doi.org/10.1016/j.indcrop.2015.10.013

    Article  Google Scholar 

  64. Wang L, Fan X, Tang P, Yuan Q (2013) Xylitol fermentation using hemicellulose hydrolysate prepared by acid pre-impregnated steam explosion of corncob. J Chem Technol Biotechnol 88:2067–2074. https://doi.org/10.1002/jctb.4070

    Article  Google Scholar 

  65. Ko CH, Chiang PN, Chiu PC, Liu CC, Yang CL, Shiau IL (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chem Technol Biotechnol 83:534–540. https://doi.org/10.1002/jctb.1828

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Centre of Innovative and Applied Bioprocessing (Mohali), Head, Department of Renewable Energy Engineering (PAU, Ludhiana), and Dr. Vikas Kumar, Department of Food Science and Technology (PAU, Ludhiana), for providing facilities to carry out this research.

Funding

This work was supported by DST- INSPIRE (Innovation in Science Pursuit for Inspired Research), Department of Science and Technology, Government of India (Grant Number IF190819).

Author information

Authors and Affiliations

Authors

Contributions

Methodology, laboratory research, investigation, data curation, writing-original draft preparation: Gurkanwal Kaur; conceptualization, supervision, resource acquisition, writing- review and editing: Dr Meena Krishania; conceptualization, supervision, editing of manuscript: Dr Monica Sachdeva Taggar and Dr Anu Kalia

Corresponding authors

Correspondence to Meena Krishania or Monica Sachdeva Taggar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Evaluation of different detoxification strategies for inhibitor removal from paddy straw acid hydrolysate

•Native and surfactant-modified bentonite clay employed for inhibitor removal from hydrolysate

•Physicochemical and structural characterization of the detoxifying adsorbent

•Bioconversion of xylose in detoxified hydrolysate into xylitol using an efficient yeast strain

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Krishania, M., Taggar, M.S. et al. Adsorptive removal of inhibitors from paddy straw hydrolysate using surfactant-modified bentonite clay for fermentative xylitol production. Biomass Conv. Bioref. 14, 1317–1328 (2024). https://doi.org/10.1007/s13399-023-04618-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-04618-7

Keywords

Navigation