Log in

Pyrolysis characteristics and kinetics study of native polyculture microalgae using thermogravimetric analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Native polyculture microalgae have significant potential as feedstocks for biofuels, but a thorough understanding of their pyrolysis kinetic parameters is required to convert them to biofuels efficiently. This study used thermogravimetric analysis (TGA) to examine the pyrolysis properties and kinetics of native polyculture microalgae. The biomass was pyrolysed from room temperature to 800 °C at four heating rates: 10, 20, 30, and 40 °C min−1. The thermal decomposition was analysed using two model-free methods: Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). It was found that thermal decomposition occurred in three stages: the dehydration stage, the active pyrolysis stage, and the passive pyrolysis stage. The maximum decomposition occurred between 186.7 to 531.7 °C, indicating the simultaneous decomposition of carbohydrates and proteins. The higher heating rates increased the total volatile matter and moved the peak pyrolysis temperature to a higher value due to limited heat transfer. The average activation energy determined by the KAS method (144.11 kJ mol−1) and the FWO method (147.43 kJ mol−1) were in agreement with each other, indicating that the obtained results are reliable. Also, a high R2 of 0.96 – 0.99 indicates that the points fit well. These findings provide useful information for designing pyrolytic systems using polyculture microalgal feedstock and suggest that polyculture microalgae could be a cost-effective alternative for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TGA:

Thermogravimetric analysis

DTG:

Differential thermogravimetric

FWO:

Flynn-Wall-Ozawa method

KAS:

Kissinger-Akahira-Sunose method

HHV:

High Heating Value

A :

Pre-exponential factor (s−1)

E :

Activation energy (kJ mol−1)

k :

Rate constant (s−1)

m t :

Sample mass at any time (g)

m i :

Initial sample mass (g)

m :

Mass remaining after pyrolysis (g)

R :

Universal gas constant (= 8.314 J mol−1 K−1)

t :

Conversion time (s)

T :

 Pyrolysis temperature (K)

α :

Fraction of conversion

β :

Heating rate

References

  1. Ching PML, Mayol AP, Juan JLGS et al (2022) Early prediction of Spirulina platensis biomass yield for biofuel production using machine learning. Clean Technol Environ Policy 24:2283–2293. https://doi.org/10.1007/S10098-022-02321-1/FIGURES/6

    Article  Google Scholar 

  2. Atikah MSN, Azlina WAKGW, Taufiq-Yap YH et al (2022) Gasification Characteristics and Kinetics of Lipid-Extracted Nannochloropsis gaditana. Process 10:1525. https://doi.org/10.3390/PR10081525

    Article  Google Scholar 

  3. Aditya L, Mahlia TMI, Nguyen LN et al (2022) Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci Total Environ 838:155871. https://doi.org/10.1016/j.scitotenv.2022.155871

    Article  Google Scholar 

  4. Hoang AT, Sirohi R, Pandey A et al (2022) Biofuel production from microalgae: challenges and chances. Phytochem Rev. https://doi.org/10.1007/S11101-022-09819-Y

    Article  Google Scholar 

  5. Neha S, Remya N (2021) Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology. J Environ Manage 297:113345. https://doi.org/10.1016/J.JENVMAN.2021.113345

    Article  Google Scholar 

  6. Mandapati RN, Ghodke PK (2021) Kinetics of pyrolysis of cotton stalk using model-fitting and model-free methods. Fuel 303:121285. https://doi.org/10.1016/J.FUEL.2021.121285

    Article  Google Scholar 

  7. Mahmood H, Moniruzzaman M, Iqbal T et al (2019) Comparative effect of ionic liquids pretreatment on thermogravimetric kinetics of crude oil palm biomass for possible sustainable exploitation. J Mol Liq 282:88–96. https://doi.org/10.1016/J.MOLLIQ.2019.02.133

    Article  Google Scholar 

  8. Mabrouki J, Abbassi MA, Khiari B et al (2022) Investigations on potential Tunisian biomasses energetic valorization: Thermogravimetric characterization and kinetic degradation analysis. Comptes Rendus Chim 25:. https://doi.org/10.5802/CRCHIM.152

  9. Mong GR, Chong CT, Ashokkumar V et al (2020) Determination of the activation energy and kinetics properties of algae (Sargassum polycystum) via thermogravimetric analysis. Chem Eng Trans 78:133–138. https://doi.org/10.3303/CET2078023

    Article  Google Scholar 

  10. El-Shafay AS, Hegazi AA, Zeidan ESB et al (2020) Experimental and numerical study of sawdust air-gasification. Alexandria Eng J 59:3665–3679. https://doi.org/10.1016/J.AEJ.2020.06.020

    Article  Google Scholar 

  11. Cai J, Xu D, Dong Z et al (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renew Sustain Energy Rev 82:2705–2715. https://doi.org/10.1016/J.RSER.2017.09.113

    Article  Google Scholar 

  12. Bach Q-VV, Chen W-HH (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresour Technol 246:88–100. https://doi.org/10.1016/j.biortech.2017.06.087

    Article  Google Scholar 

  13. Nasrullah A, Khan AS, Khan SZ et al (2022) Kinetics and thermodynamic study of Calligonum polygonoides pyrolysis using model-free methods. Process Saf Environ Prot 160:130–138. https://doi.org/10.1016/J.PSEP.2022.01.084

    Article  Google Scholar 

  14. Mohammed IY, Abakr YA, Mokaya R (2018) Valorisation of adzuki bean waste to biofuel precursors via pyrolysis: kinetics, product distribution and characterisation. Biomass Convers Biorefinery 8:699–710. https://doi.org/10.1007/S13399-018-0318-6/TABLES/5

    Article  Google Scholar 

  15. Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496. https://doi.org/10.1016/J.RENENE.2017.02.026

    Article  Google Scholar 

  16. Joseph D, Raj JB, Ramar K (2021) Thermal analysis and kinetic study of Indian almond leaf by model-free methods. 19:5793–5803. https://doi.org/10.1080/15440478.2021.1889442

  17. Brachi P, Miccio F, Miccio M, Ruoppolo G (2015) Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol 130:147–154. https://doi.org/10.1016/J.FUPROC.2014.09.043

    Article  Google Scholar 

  18. Viju D, Gautam R, Vinu R (2018) Application of the distributed activation energy model to the kinetic study of pyrolysis of Nannochloropsis oculata. Algal Res 35:168–177. https://doi.org/10.1016/J.ALGAL.2018.08.026

    Article  Google Scholar 

  19. Gautam R, Varma AK, Vinu R (2017) Apparent kinetics of fast pyrolysis of four different microalgae and product analyses using Pyrolysis-FTIR and Pyrolysis-GC/MS. Energy Fuels 31:12339–12349. https://doi.org/10.1021/acs.energyfuels.7b02520

    Article  Google Scholar 

  20. Vuppaladadiyam AK, Antunes E, Sanchez PB et al (2021) Influence of microalgae on synergism during co-pyrolysis with organic waste biomass: A thermogravimetric and kinetic analysis. Renew Energy 167:42–55. https://doi.org/10.1016/j.renene.2020.11.039

    Article  Google Scholar 

  21. Alam MA, Wan C, Tran DT et al (2022) Microalgae binary culture for higher biomass production, nutrients recycling, and efficient harvesting: a review. Environ Chem Lett 20:1153–1168. https://doi.org/10.1007/S10311-021-01363-Z

    Article  Google Scholar 

  22. Aggarwal M, Remya N (2021) Application of native mix algal strain for gray water treatment and biofuel production: preliminary study. J Hazardous Toxic Radioact Waste 25:04020070. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000582

    Article  Google Scholar 

  23. APHA (2011) Standard Method for Examination of Water and Wastewater

  24. Gai C, Zhang Y, Chen WT et al (2013) Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour Technol 150:139–148

    Article  Google Scholar 

  25. Merdun H, Laougé ZB (2021) Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA. Renew Energy 163:453–464. https://doi.org/10.1016/j.renene.2020.08.120

    Article  Google Scholar 

  26. Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273. https://doi.org/10.1016/J.BIORTECH.2012.04.077

    Article  Google Scholar 

  27. Jagtap A, Kalbande SR (2022) Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: a comparative study using model-free methods. Biomass Convers Biorefinery 1:1–12. https://doi.org/10.1007/S13399-021-02228-9/TABLES/4

    Article  Google Scholar 

  28. Shu** Z, Yulong W, Mingde Y et al (2010) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol 101:359–365. https://doi.org/10.1016/j.biortech.2009.08.020

    Article  Google Scholar 

  29. Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642. https://doi.org/10.1002/APP.1962.070062406

    Article  Google Scholar 

  30. Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246. https://doi.org/10.1016/j.biortech.2013.06.102

    Article  Google Scholar 

  31. Jiang L, Zhou Z, **ang H et al (2021) Characteristics and synergistic effects of co-pyrolysis of microalgae with polypropylene. Fuel 314:122765. https://doi.org/10.1016/j.fuel.2021.122765

    Article  Google Scholar 

  32. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  33. Guan Y, Liu C, Peng Q et al (2019) Pyrolysis kinetics behavior of solid leather wastes. Waste Manag 100:122–127. https://doi.org/10.1016/J.WASMAN.2019.09.005

    Article  Google Scholar 

  34. Aliyu A, Lee JGM, Harvey AP (2021) Microalgae for biofuels: A review of thermochemical conversion processes and associated opportunities and challenges. Bioresour Technol Reports 15:100694

    Article  Google Scholar 

  35. Saqib NU, Baroutian S, Sarmah AK (2018) Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization. Bioresour Technol 266:357–363. https://doi.org/10.1016/J.BIORTECH.2018.06.112

    Article  Google Scholar 

  36. Wu S, Zhang S, Wang C et al (2018) High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Process Technol 171:293–300. https://doi.org/10.1016/J.FUPROC.2017.11.025

    Article  Google Scholar 

  37. Wang M, Zhang SL, Duan PG (2019) Slow pyrolysis of biomass: effects of effective hydrogen-to-carbon atomic ratio of biomass and reaction atmospheres. Energy Sources Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2019.1665150

    Article  Google Scholar 

  38. Zhu L, Lei H, Wang L et al (2015) Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J Anal Appl Pyrolysis 115:149–156. https://doi.org/10.1016/j.jaap.2015.07.012

    Article  Google Scholar 

  39. Chen WH, Chu YS, Liu JL, Chang JS (2018) Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Convers Manag 160:209–219. https://doi.org/10.1016/J.ENCONMAN.2018.01.036

    Article  Google Scholar 

  40. Wu K, Liu J, Wu Y et al (2014) Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol 163:18–25. https://doi.org/10.1016/j.biortech.2014.03.162

    Article  Google Scholar 

  41. Bolognesi S, Bernardi G, Callegari A et al (2021) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Convers Biorefinery 11:289–299. https://doi.org/10.1007/S13399-019-00572-5/TABLES/5

    Article  Google Scholar 

  42. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140

    Article  Google Scholar 

  43. Sun Z, Xu B, Rony AH et al (2017) Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5. Energy Convers Manag 146:182–194. https://doi.org/10.1016/J.ENCONMAN.2017.04.104

    Article  Google Scholar 

  44. Cheng Q, Jiang M, Chen Z et al (2016) Pyrolysis and kinetic behavior of banana stem using thermogravimetric analysis. 38:3383–3390. https://doi.org/10.1080/15567036.2016.1153754

  45. Peres CB, Rosa AH, de Morais LC (2021) Investigation of pyrolysis kinetics parameters and thermal behavior of thermochemically modified bagasse for bioenergy potential. SN Appl Sci 3:337. https://doi.org/10.1007/s42452-021-04345-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Aggarwal Mohit: Material preparation, data collection and analysis, writing; Neelancherry Remya: Conceptualization, supervision, writing – review/editing.

Corresponding author

Correspondence to Neelancherry Remya.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohit, A., Remya, N. Pyrolysis characteristics and kinetics study of native polyculture microalgae using thermogravimetric analysis. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04175-z

Keywords

Navigation