Log in

A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

From the past decade, there is a demand for the development of highly sensitive and selective, operating at low temperature, and stable gas-sensing materials used to monitor hazardous gases. The discovery of graphene has led to the implication of the same as gas sensor as it possesses large value of surface to volume ratio and high value of electron mobility at room temperature. Few researchers have fabricated reduced graphene oxide–metal oxide composite gas sensors exhibiting good electrical and gas-sensing properties. But still, it is a very less explored area. This article provides an overview of electrical and gas-sensing properties of reduced graphene oxide–metal oxide nanocomposites with improved sensitivity, selectivity, stability, and other sensing performances. This review is mainly focuses on reduced graphene oxide–metal oxide nanocomposite-based gas sensors which are cost-effective and sensitive to the various gases/vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data are available in the research work.

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  2. Ealia SAM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263:032019. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  3. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  4. Saifuddin N, Raziah AZ, Junizah AR (2012) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:e676815. https://doi.org/10.1155/2013/676815

    Article  Google Scholar 

  5. MM Azim, U Mohsin, 2019 Chapter 7 - Graphene oxide/transition metal oxide as a promising nanomaterial for hydrogen storage, in: M. Jawaid, A. Ahmad, D. Lokhat (Eds.), Graphene-Based Nanotechnologies Energy Environ. Appl., Elsevier, 121–144. https://doi.org/10.1016/B978-0-12-815811-1.00007-7.

  6. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747. https://doi.org/10.1021/cr068010r

    Article  Google Scholar 

  7. AK Geim, K.S. Novoselov, 2009 The rise of graphene, Nanosci. Technol. Collect. Rev. Nat. J. 11–19. https://doi.org/10.1142/9789814287005_0002.

  8. Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK, Barra AL, Sprinkle M, Berger C, De Heer WA, Potemski M (2008) Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett 101:1–4. https://doi.org/10.1103/PhysRevLett.101.267601

    Article  Google Scholar 

  9. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  10. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495. https://doi.org/10.1038/nnano.2008.199

    Article  Google Scholar 

  11. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  12. Reddy S, Kumara Swamy BE, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochimica Acta. 61:78–86. https://doi.org/10.1016/j.electacta.2011.11.091

    Article  Google Scholar 

  13. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B Chem 5:7–19. https://doi.org/10.1016/0925-4005(91)80213-4

    Article  Google Scholar 

  14. S. Khaldi, Z. Dibi, 2017 Neural network modeling of smart nanostructure sensor for electronic nose application, in: 2017 6th Int. Conf. Syst. Control ICSC, pp. 607–610. https://doi.org/10.1109/ICoSC.2017.7958690

  15. Prinz GA (1998) Magnetoelectronics. Science 282:1660–1663. https://doi.org/10.1126/science.282.5394.1660

    Article  Google Scholar 

  16. Sun D, Luo Y, Debliquy M, Zhang C (2018) Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol 9:2832–2844. https://doi.org/10.3762/bjnano.9.264

    Article  Google Scholar 

  17. Story T, Gałazka RR, Frankel RB, Wolff PA (1986) Carrier-concentration induced ferromagnetism in PbSnMnTe. Phys Rev Lett 56:777–779. https://doi.org/10.1103/PhysRevLett.56.777

    Article  Google Scholar 

  18. DJ Heinzen, RH Wynar, PD Kheruntsyan, PD Drummond, T Dietl, H Ohno, F Matsukura, J Cibert, D Ferrand, 1995 Zener model description of ferromagnetism in zinc-blende magnetic semiconductors Downloaded from. Chem Phys Lett 269; 2657

  19. Zener C (1951) Interaction between the d shells in the transition metals. Phys Rev 81:440–444. https://doi.org/10.1103/PhysRev.81.440

    Article  Google Scholar 

  20. Yoon Y, Truong PL, Lee D, Ko SH (2022) Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci Au 2:64–92. https://doi.org/10.1021/acsnanoscienceau.1c00029

    Article  Google Scholar 

  21. Tian W, Liu X, Yu W (2018) Research progress of gas sensor based on graphene and its derivatives: a review. Appl Sci 8:1118. https://doi.org/10.3390/app8071118

    Article  Google Scholar 

  22. J.K. Furdyna, Diluted magnetic semiconductors, 29 (2012). https://doi.org/10.1063/1.341700.

  23. Ahmed A, Siddique MN, Ali T, Tripathi P (2018) Influence of reduced graphene oxide on structural, optical, thermal and dielectric properties of SnO2 nanoparticles. Adv Powder Technol 29:3415–3426. https://doi.org/10.1016/j.apt.2018.09.026

    Article  Google Scholar 

  24. Iskandar F, Hikmah U, Stavila E, Aimon AH (2017) Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO). RSC Adv 7:52391–52397. https://doi.org/10.1039/C7RA10013B

    Article  Google Scholar 

  25. Aydın C (2019) Synthesis of SnO2:rGO nanocomposites by the microwave-assisted hydrothermal method and change of the morphology, structural, optical and electrical properties. J Alloys Compd 771:964–972. https://doi.org/10.1016/j.jallcom.2018.08.298

    Article  Google Scholar 

  26. Darwish AG, Ghoneim AM, Hassaan MY, Shehata OS, Turky GM (2019) Impact of RGO on electrical and dielectric properties of Co3O4/RGO nanocomposite. Mater Res Express 6:105039. https://doi.org/10.1088/2053-1591/ab3999

    Article  Google Scholar 

  27. Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Tech J 32:1–41. https://doi.org/10.1002/j.1538-7305.1953.tb01420.x

    Article  Google Scholar 

  28. Jiménez-Cadena G, Riu J, Rius FX (2007) Gas sensors based on nanostructured materials. Analyst 132:1083–1099. https://doi.org/10.1039/B704562J

    Article  Google Scholar 

  29. Nazemi H, Joseph A, Park J, Emadi A (2019) Advanced micro- and nano-gas sensor technology: a review. Sensors 19:1285. https://doi.org/10.3390/s19061285

    Article  Google Scholar 

  30. Patil SL, Chougule MA, Pawar SG, Sen S, Moholkar AV, Kim JH, Patil VB (2011) Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sens Transducers 134:120–131

    Google Scholar 

  31. Prajesh R, Jain N, Agarwal A (2016) Low power highly sensitive platform for gas sensing application. Microsyst Technol 22:2185–2192. https://doi.org/10.1007/s00542-015-2609-1

    Article  Google Scholar 

  32. Pramod NG, Pandey SN, Sahay PP (2012) Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films. Ceram Int 38:4151–4158. https://doi.org/10.1016/j.ceramint.2012.01.075

    Article  Google Scholar 

  33. Wang L, Kalyanasundaram K, Stanacevic M, Gouma P (2010) Nanosensor device for breath acetone detection. Sens Lett 8:709–712. https://doi.org/10.1166/sl.2010.1334

    Article  Google Scholar 

  34. Zhang D, Yin N, **a B (2015) Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J Mater Sci Mater Electron 26:5937–5945. https://doi.org/10.1007/s10854-015-3165-2

    Article  Google Scholar 

  35. Jeevitha G, Abhinayaa R, Mangalaraj D, Ponpandian N, Meena P, Mounasamy V, Madanagurusamy S (2019) Porous reduced graphene oxide (rGO)/WO 3 nanocomposites for the enhanced detection of NH 3 at room temperature. Nanoscale Adv 1:1799–1811. https://doi.org/10.1039/C9NA00048H

    Article  Google Scholar 

  36. Donarelli M, Ottaviano L (2018) 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18:3638. https://doi.org/10.3390/s18113638

    Article  Google Scholar 

  37. Liu S, Yu B, Zhang H, Fei T, Zhang T (2014) Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B Chem 202:272–278. https://doi.org/10.1016/j.snb.2014.05.086

    Article  Google Scholar 

  38. Yang F, Guo Z (2016) Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde. J Colloid Interface Sci 467:192–202. https://doi.org/10.1016/j.jcis.2016.01.033

    Article  Google Scholar 

  39. Naveen CS, MP Rajeeva, AR Lamani, HS. Jayanna, 2014 Acetone sensing properties of ZnO nanomaterial, in: Proc. Natl. Conf. Recent Trends PhysicsMathematics Eng. Mysore

  40. Naveen CS, Rajeeva MP, Ashok RL, Jayanna HS (2017) Influence of crystallite size on ethanol sensing properties of ZnO nanomaterials. Mater Today Proc 4:12032–12038. https://doi.org/10.1016/j.matpr.2017.09.127

    Article  Google Scholar 

  41. Rombach J, Bierwagen O, Papadogianni A, Mischo M, Cimalla V, Berthold T, Krischok S, Himmerlich M (2015) Electrical conductivity and gas-sensing properties of Mg-doped and undoped single-crystalline In2O3 thin films: bulk vs. surface. Procedia Eng. 120:79–82. https://doi.org/10.1016/j.proeng.2015.08.570

    Article  Google Scholar 

  42. O Gonzalez, S Roso, R Calavia, X Vilanova, E Llobet, 2015 NO2 sensing properties of thermally or UV activated In2O3 nano-octahedra, https://doi.org/10.1016/J.PROENG.2015.08.817.

  43. Anukunprasert T, Saiwan C, Traversa E (2005) The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2. Sci Technol Adv Mater 6:359–363. https://doi.org/10.1016/j.stam.2005.02.020

    Article  Google Scholar 

  44. Benkstein KD, Semancik S (2006) Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens Actuators B Chem 113:445–453. https://doi.org/10.1016/j.snb.2005.03.122

    Article  Google Scholar 

  45. Avinash BS, Chaturmukha VS, Harish BM, Jayanna HS, Rajeeva MP, Naveen CS, Lamani AR (2018) Synthesis, Characterization and room temperature acetone sensing of TiO2 nanotubes. Sens Lett 16:105–109. https://doi.org/10.1166/sl.2018.3921

    Article  Google Scholar 

  46. Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens Actuators B Chem 68:189–196. https://doi.org/10.1016/S0925-4005(00)00428-7

    Article  Google Scholar 

  47. Kida T, Nishiyama A, Yuasa M, Shimanoe K, Yamazoe N (2009) Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens Actuators B Chem 135:568–574. https://doi.org/10.1016/j.snb.2008.09.056

    Article  Google Scholar 

  48. Li Y, Liang J, Tao Z, Chen J (2008) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43:2380–2385. https://doi.org/10.1016/j.materresbull.2007.07.045

    Article  Google Scholar 

  49. Rajeeva MP, Naveen CS, Lamani AR, Jayanna HS (2017) Synthesis, characterization and electrical conductivity of high porous tin oxide nanocrystallites for ethanol sensing. Mater Today Proc 4:12094–12102. https://doi.org/10.1016/j.matpr.2017.09.136

    Article  Google Scholar 

  50. Llobet E, Ivanov P, Vilanova X, Brezmes J, Hubalek J, Malysz K, Gràcia I, Cané C, Correig X (2003) Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems. Sens Actuators B Chem 96:94–104. https://doi.org/10.1016/S0925-4005(03)00491-X

    Article  Google Scholar 

  51. Mädler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators B Chem 114:283–295. https://doi.org/10.1016/j.snb.2005.05.014

    Article  Google Scholar 

  52. Trinchi A, Li YX, Wlodarski W, Kaciulis S, Pandolfi L, Viticoli S, Comini E, Sberveglieri G (2003) Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing. Sens Actuators B Chem 95:145–150. https://doi.org/10.1016/S0925-4005(03)00424-6

    Article  Google Scholar 

  53. Choi YR, Yoon Y-G, Choi KS, Kang JH, Shim Y-S, Kim YH, Chang HJ, Lee J-H, Park CR, Kim SY, Jang HW (2015) Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 91:178–187. https://doi.org/10.1016/j.carbon.2015.04.082

    Article  Google Scholar 

  54. Ghosh R, Singh A, Santra S, Ray SK, Chandra A, Guha PK (2014) Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sens Actuators B Chem 205:67–73. https://doi.org/10.1016/j.snb.2014.08.044

    Article  Google Scholar 

  55. Choi H, Choi JS, Kim J-S, Choe J-H, Chung KH, Shin J-W, Kim JT, Youn D-H, Kim K-C, Lee J-I, Choi S-Y, Kim P, Choi C-G, Yu Y-J (2014) Flexible and Transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10:3685–3691. https://doi.org/10.1002/smll.201400434

    Article  Google Scholar 

  56. Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20:445502. https://doi.org/10.1088/0957-4484/20/44/445502

    Article  Google Scholar 

  57. Su P-G, Shieh H-C (2014) Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens Actuators B Chem 190:865–872. https://doi.org/10.1016/j.snb.2013.09.078

    Article  Google Scholar 

  58. Yuan W, Liu A, Huang L, Li C, Shi G (2013) High-performance NO2 sensors based on chemically modified graphene. Adv Mater 25:766–771. https://doi.org/10.1002/adma.201203172

    Article  Google Scholar 

  59. Li X, Zhao Y, Wang X, Wang J, Gaskov AM, Akbar SA (2016) Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens Actuators B Chem 230:330–336. https://doi.org/10.1016/j.snb.2016.02.069

    Article  Google Scholar 

  60. Tyagi P, Sharma A, Tomar M, Gupta V (2017) A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors. Sens Actuators B Chem 248:980–986. https://doi.org/10.1016/j.snb.2017.02.147

    Article  Google Scholar 

  61. Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2sensing in graphene–WO3nanocomposites. Nanotechnology 23:205501. https://doi.org/10.1088/0957-4484/23/20/205501

    Article  Google Scholar 

  62. Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21:17167–17174. https://doi.org/10.1039/C1JM12692J

    Article  Google Scholar 

  63. Hung CM, Dat DQ, Van Duy N, Van Quang V, Van Toan N, Van Hieu N, Hoa ND (2020) Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Mater Res Bull 125:110810. https://doi.org/10.1016/j.materresbull.2020.110810

    Article  Google Scholar 

  64. Wu K, Luo Y, Li Y, Zhang C (2019) Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J Nanotechnol 10:2516–2526. https://doi.org/10.3762/bjnano.10.242

    Article  Google Scholar 

  65. Chen N, Li X, Wang X, Yu J, Wang J, Tang Z, Akbar SA (2013) Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens Actuators B Chem 188:902–908. https://doi.org/10.1016/j.snb.2013.08.004

    Article  Google Scholar 

  66. Tian M, Miao J, Cheng P, Mu H, Tu J, Sun J (2019) Layer-by-layer nanocomposites consisting of Co3O4 and reduced graphene (rGO) nanosheets for high selectivity ethanol gas sensors. Appl Surf Sci 479:601–607. https://doi.org/10.1016/j.apsusc.2019.02.148

    Article  Google Scholar 

  67. Galstyan V, Comini E, Kholmanov I, Faglia G, Sberveglieri G (2016) Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Adv 6:34225–34232. https://doi.org/10.1039/C6RA01913G

    Article  Google Scholar 

  68. Hoa LT, Tien HN, Luan VH, Chung JS, Hur SH (2013) Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sens Actuators B Chem 185:701–705. https://doi.org/10.1016/j.snb.2013.05.050

    Article  Google Scholar 

  69. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134:4905–4917. https://doi.org/10.1021/ja211683m

    Article  Google Scholar 

  70. Zhang D, Chang H, Li P, Liu R, Xue Q (2016) Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens Actuators B Chem 225:233–240. https://doi.org/10.1016/j.snb.2015.11.024

    Article  Google Scholar 

  71. Zhang H, Feng J, Fei T, Liu S, Zhang T (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B Chem 190:472–478. https://doi.org/10.1016/j.snb.2013.08.067

    Article  Google Scholar 

  72. Su P-G, Yang L-Y (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sens Actuators B Chem 223:202–208. https://doi.org/10.1016/j.snb.2015.09.091

    Article  Google Scholar 

  73. Sharma N, Sharma V, Jain Y, Kumari M, Gupta R, Sharma SK, Sachdev K (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol Symp 376:1700006. https://doi.org/10.1002/masy.201700006

    Article  Google Scholar 

  74. Latif U, Dickert FL (2015) Graphene hybrid materials in gas sensing applications. Sensors 15:30504–30524. https://doi.org/10.3390/s151229814

    Article  Google Scholar 

  75. Cao Y, Li Y, Jia D, **e J (2014) Solid-state synthesis of SnO2–graphene nanocomposite for photocatalysis and formaldehyde gas sensing. RSC Adv 4:46179–46186. https://doi.org/10.1039/C4RA06995A

Download references

Funding

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4340474DSR04. The authors extend their appreciation to the deanship of scientific research at King Khalid University for funding this work through large group project under grant number (RGP. 2/83/43).

Author information

Authors and Affiliations

Authors

Contributions

Kirannakumar H. V, Thejas R, Naveen C S and Mowffaq Oreijah work on literature survey; M. Ijaz Khan and Kiranakumar H. V. computed the results; Prasanna G. D and Kamel Guedri write the final manuscript; M. Ijaz Khan, Kamel Guedri, Omar T Bafakeeh, and Mohammed Jameel work on the figure illustration and address the referee’s comments. Sathish Reddy and M. Ijaz Khan review the final version.

Corresponding author

Correspondence to M. Ijaz Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiranakumar. H. V, Thejas R, Naveen C S et al. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Conv. Bioref. 14, 12625–12635 (2024). https://doi.org/10.1007/s13399-022-03258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03258-7

Keywords

Navigation