Log in

Investigation on the potential of eco-friendly bio-char for amendment in serpentine soils and immobilization of heavy metals contaminants: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Serpentine soils are contaminants of naturally occurring metal-rich agricultural and fallow lands due to erosion of the serpentine site with consequences and deterioration of soil, water quality, and water sources in the ecosystem. The harsh climatic conditions due to the high concentration of potential toxic elements, organic pollutants, and acidity make it difficult to cultivate and establish vegetation on serpentine or adjacent land. Recently, biochar amendments have emerged in the area of soil remediation technology with the suitability and potential to promote seed emergence, plant growth, biomass productivity, and vegetation cover on contaminated soils such as serpentine soil. By enhancing the buffering capacity of the soil through pH, soil nutrients and water holding capacity stimulate the diversity and function of microbes. In this review, we have conferred the physicochemical aspects of serpentine soil, heavy metal contaminants, and their consequences, especially in crop production and phytotoxicity. Another, the assessment of biochar preparation using various types of feedstock, their characteristics, and the application for the amendment of serpentine soils has been deliberated. The restoration of sites with a high fraction of heavy metal contaminents and organic pollutants associated with serpentine soils using biochar has been highlighted for its importance. In line with the possibility of expanding the cultivated area, future research directions have been suggested in field trials, advances in biochar production, and environmental risk assessment. In addition, the applicable mechanisms have prerequisites to accelerate the efficiency of biochar amendments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting this study are available in citations and references.

References

  1. Camps Arbestain M, Saggar S, Leifeld J (2014) Environmental benefits and risks of biochar application to soil. Agric Ecosyst Environ 191:1–4. https://doi.org/10.1016/j.agee.2014.04.014

    Article  Google Scholar 

  2. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Soil Biology & Biochemistry Biochar effects on soil biota e A review. Soil Biol. Biochem. 43.

  3. Neilson S, Rajakaruna N, 2012. Roles of rhizospheric processes and plant physiology in applied phytoremediation of contaminated soils using Brassica oilseedshttps://doi.org/10.1007/978-94-007-3913-0_12

  4. O’Hanley DS (1996) Serpentinites records of tectonic and petrological history. New York Oxford Oxford Univ Press 34:277. https://doi.org/10.1017/S0016756897408257

    Article  Google Scholar 

  5. Rajapaksha, A.U., Vithanage, M., Oze, C., Bandara, W.M.A.T., Weerasooriya, R., 2012. Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 189–190 https://doi.org/10.1016/j.geoderma.2012.04.019

  6. Vithanage, M., Rajapaksha, A.U., Tang, X., Thiele-Bruhn, S., Kim, K.H., Lee, S.E., Ok, Y.S., 2014. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manage https://doi.org/10.1016/j.jenvman.2014.02.030

  7. Alexander, E.B., 2004. Serpentine soil redness, differences among peridotite and serpentinite materials, klamath mountains, California. Int. Geol. Rev. 46 https://doi.org/10.2747/0020-6814.46.8.754

  8. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Croom Helm, Dioscorides Press, Kent, England. https://doi.org/10.1017/S0016756800010359

    Book  Google Scholar 

  9. Vara Prasad, M.N., Freitas, H.M.D.O., 1999. Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electron. J. Biotechnolhttps://doi.org/10.2225/vol2-issue1-fulltext-5

  10. Baugé SMY, Lavkulich LM, Schreier HE (2013) Phosphorus and trace metals in serpentine-affected soils of the Sumas Basin. British Columbia Can J Soil Sci 93:359–367. https://doi.org/10.4141/CJSS2012-138

    Article  Google Scholar 

  11. Susaya JP, Kim KH, Asio VB, Chen ZS, Navarrete I (2010) Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environ Monit Assess 167:505–514. https://doi.org/10.1007/s10661-009-1067-6

    Article  Google Scholar 

  12. Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., Vithanage, M., 2014a. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J. Soils Sediments 15 https://doi.org/10.1007/s11368-014-0967-4

  13. Johnston, W.R., Proctor, J., 2016. Growth of serpentine and non-serpentine races of festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil Authors ( s ): W . R . Johnston and John Proctor Published by : British Ecological Society Stable http://www.js 69, 855–869.

  14. Almaroai YA, Usman ARA, Ahmad M, Moon DH, Cho JS, Joo YK, Jeon C, Lee SS, Ok YS (2014) Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci 71:1289–1296. https://doi.org/10.1007/s12665-013-2533-6

    Article  Google Scholar 

  15. Houben, D., Evrard, L., Sonnet, P., 2013a. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2013.07.019

  16. Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070. https://doi.org/10.1007/s11368-010-0190-x

    Article  Google Scholar 

  17. Ren X, Sun H, Wang F, Cao F (2016) The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months. Chemosphere 144:2257–2263. https://doi.org/10.1016/j.chemosphere.2015.10.132

    Article  Google Scholar 

  18. Derakhshan Z, Myung N, Jung C (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40:927–953. https://doi.org/10.1007/s10653-017-9964-z

    Article  Google Scholar 

  19. Bradl, H., Xenidis, A., 2005. Chapter 3 Remediation techniques. https://doi.org/10.1016/S1573-4285(05)80022-5

  20. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation — an overview. CRC Crit Rev Plant Sci 24:109–122. https://doi.org/10.1080/07352680590952496

    Article  Google Scholar 

  21. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

    Article  Google Scholar 

  22. Binda G, Spanu D, Bettinetti R, Magagnin L, Pozzi A, Dossi C (2020) Comprehensive comparison of microalgae-derived biochar from different feedstocks: a prospective study for future environmental applications. Algal Research 52:102103

    Article  Google Scholar 

  23. Bolognesi S, Bernardi G, Callegari A, Dondi D, Capodaglio AG (2021) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Conversion and Biorefinery 11(2):289–299

    Article  Google Scholar 

  24. Jaiswal, K. K., Dutta, S., Banerjee, I., Pohrmen, C. B., & Kumar, V. (2021). Photosynthetic microalgae–based carbon sequestration and generation of biomass in biorefinery approach for renewable biofuels for a cleaner environment. Biomass Conversion and Biorefinery, 1–19.

  25. Jaiswal KK, Kumar V, Verma R, Verma M, Kumar A, Vlaskin MS, Kim H (2021) Graphitic bio-char and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. Journal of Hazardous Materials 409:124987

    Article  Google Scholar 

  26. Jaiswal KK, Kumar V, Vlaskin MS, Nanda M, Verma M, Ahmad W, Kim H (2021) Hydropyrolysis of freshwater macroalgal bloom for bio-oil and biochar production: kinetics and isotherm for removal of multiple heavy metals. Environmental Technology & Innovation 22:101440

    Article  Google Scholar 

  27. Camps Arbestain, M., Saggar, S., Leifeld, J., 2014b. Environmental benefits and risks of biochar application to soil. Agric. Ecosyst. Environ.https://doi.org/10.1016/j.agee.2014.04.014

  28. Higashikawa FS, Conz RF, Colzato M, Cerri CEP, Alleoni LRF (2016) Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. J Clean Prod 137:965–972. https://doi.org/10.1016/j.jclepro.2016.07.205

    Article  Google Scholar 

  29. Jiang J, Peng Y, Yuan M, Hong Z, Wang D, Xu R (2015) Rice straw-derived biochar properties and functions as Cu(II) and cyromazine sorbents as influenced by pyrolysis temperature. Pedosphere 25:781–789. https://doi.org/10.1016/S1002-0160(15)30059-X

    Article  Google Scholar 

  30. Ahmad, M., Moon, D.H., Vithanage, M., Koutsospyros, A., Lee, S.S., Yang, J.E., Lee, S.E., Jeon, C., Ok, Y.S., 2014a. Production and use of biochar from buffalo-weed (ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol. https://doi.org/10.1002/jctb.4157

  31. Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954. https://doi.org/10.1021/es301029g

    Article  Google Scholar 

  32. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S (2012) Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58. https://doi.org/10.1016/j.enpol.2011.11.026

    Article  Google Scholar 

  33. Yin Q, Ren H, Wang R, Zhao Z, 2018 Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Sci. Total Environ. 631–632, 895–903. https://doi.org/10.1016/j.scitotenv.2018.03.091

  34. Yuan P, Shen B, Duan D, Adwek G, Mei X, Lu F (2017) Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process. Energy 141:472–482. https://doi.org/10.1016/j.energy.2017.09.058

    Article  Google Scholar 

  35. Hu X, Xue Y, Long L, Zhang K (2018) Characteristics and batch experiments of acid- and alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ Sci Pollut Res 25:19932–19940. https://doi.org/10.1007/s11356-018-2198-5

    Article  Google Scholar 

  36. Sneath HE, Hutchings TR, De Leij FAAM (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environ Pollut 178:361–366. https://doi.org/10.1016/j.envpol.2013.03.009

    Article  Google Scholar 

  37. Ahmad Z, Gao B, Mosa A, Yu H, Yin X, Bashir A, Ghoveisi H, Wang S (2018) Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod 180:437–449. https://doi.org/10.1016/j.jclepro.2018.01.133

    Article  Google Scholar 

  38. Lahori AH, Guo Z, Zhang Z, Li R, Mahar A, Awasti MK, Shen F, Sial TA, Kumbhar F, Wang P, Jiang S, 2017. Use of Biochar as an Amendment for remediation of heavy metal-contaminated soils: prospects and challenges. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60490-9

  39. Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., 2017. JES-01282; No of Pages 18.

  40. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK (2017) Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies. Bioresour Technol 236:155–163. https://doi.org/10.1016/j.biortech.2017.03.105

    Article  Google Scholar 

  41. Wang M, Zhu Y, Cheng L, Andserson B, Zhao X, Wang D, Ding A (2018) Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci (China) 63:156–173. https://doi.org/10.1016/j.jes.2017.08.004

    Article  Google Scholar 

  42. Lone AH, Najar GR, Ganie MA, Sofi JA, Ali T (2015) Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere 25:639–653. https://doi.org/10.1016/S1002-0160(15)30045-X

    Article  Google Scholar 

  43. Chai Y, Currie RJ, Davis JW, Wilken M, Martin GD, Fishman VN, Ghosh U (2012) Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 46:1035–1043. https://doi.org/10.1021/es2029697

    Article  Google Scholar 

  44. Jiang TY, Jiang J, Xu RK, Li Z (2012) Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249–256. https://doi.org/10.1016/j.chemosphere.2012.04.028

    Article  Google Scholar 

  45. Bandara T, Herath I, Kumarathilaka P, Hseu ZY, Ok YS, Vithanage M (2017) Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ Geochem Health 39:391–401. https://doi.org/10.1007/s10653-016-9842-0

    Article  Google Scholar 

  46. Bandara T, Herath I, Kumarathilaka P, Seneviratne M, Seneviratne G, Rajakaruna N, Ok YS (2017) Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. J Soils Sediments 17(3):665–673

    Article  Google Scholar 

  47. Mahar A, Wang P, Li R, Zhang Z (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25:555–568. https://doi.org/10.1016/S1002-0160(15)30036-9

    Article  Google Scholar 

  48. Kumar A, Joseph S, Tsechansky L, Privat K, Schreiter IJ, Schüth C, Graber ER (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci Total Environ 626:953–961. https://doi.org/10.1016/j.scitotenv.2018.01.157

    Article  Google Scholar 

  49. Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002

    Article  Google Scholar 

  50. Herath HMSK, Camps-Arbestain M, Hedley MJ, Kirschbaum MUF, Wang T, van Hale R (2015) Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. GCB Bioenergy 7:512–526. https://doi.org/10.1111/gcbb.12183

    Article  Google Scholar 

  51. Herath I, Kumarathilaka P, Navaratne A, Rajakaruna N, Vithanage M (2015) Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J Soils Sediments 15(1):126–138

    Article  Google Scholar 

  52. Luo, X., Chen, L., Zheng, H., Chang, J., Wang, H., Wang, Z., **ng, B., 2016a. Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma. https://doi.org/10.1016/j.geoderma.2016.07.015

  53. Awad YM, Ok YS, Abrigata J, Beiyuan J, Beckers F, Tsang DCW, Rinklebe J (2018) Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Sci Total Environ 625:147–154. https://doi.org/10.1016/j.scitotenv.2017.12.194

    Article  Google Scholar 

  54. Aksoy A, Leblebici Z, Prasad MNV (2015) Metal-accumulating plants from serpentine habitats of Kizildaʇ, Konya Province. Turkey Aust J Bot 63:372–378. https://doi.org/10.1071/BT14354

    Article  Google Scholar 

  55. Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46:97–126. https://doi.org/10.2747/0020-6814.46.2.97

    Article  Google Scholar 

  56. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224. https://doi.org/10.3732/ajb.1300349

    Article  Google Scholar 

  57. Harrison S, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press

    Google Scholar 

  58. Hseu ZY, Su YC, Zehetner F, Hsi HC (2017) Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. J Environ Manage 186:151–157. https://doi.org/10.1016/j.jenvman.2016.02.034

    Article  Google Scholar 

  59. Beesley, L., Moreno-Jimenez, E., Fellet, G., Melo, L and Sizmur, T., 2015. Biochar and heavy metals, Biochar for Environmental Management Science, Technology and Implementation Second Edition.

  60. Peng J, feng, Song, Y. hui, Yuan, P., Cui, X. yu, Qiu, G. lei, (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.04.061

    Article  Google Scholar 

  61. USDA, 2017. Soil Survey Manual Agriculture. Handbook 18. USDA, Nat. Resour. Conserv. Serv. 18, 483.

  62. Alves S, Trancoso MA, de Gonçalves M, L.S., Correia dos Santos, M.M., (2011) A nickel availability study in serpentinised areas of Portugal. Geoderma 164:155–163. https://doi.org/10.1016/j.geoderma.2011.05.019

    Article  Google Scholar 

  63. Menezes De Sequeira, E., Pinto Da Silva, A.R., 1991. Ecology of serpentinized areas of north-east Portugal. Ecol. areas with serpentinized rockshttps://doi.org/10.1007/978-94-011-3722-5_7

  64. Cheng, C.-H., Jien, S.-H., Iizuka, Y., Tsai, H., Chang, Y.-H., Hseu, Z.-Y., 2011. Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci. Soc. Am. J. 75 https://doi.org/10.2136/sssaj2010.0007

  65. Kazakou E, Adamidis GC, Baker AJM, Reeves RD, Godino M, Dimitrakopoulos PG (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385. https://doi.org/10.1007/s11104-010-0302-9

    Article  Google Scholar 

  66. Krause, W. (1958). O. soil specialists, 1958. The mineral nutrition of plants / mineral nutrition of plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94729-2_26

  67. Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366. https://doi.org/10.1016/S0065-2504(08)60291-3

    Article  Google Scholar 

  68. Fan Y, Zhang Y, Hess F, Huang B, Chen Z (2020) Nutrient balance and soil changes in plastic greenhouse vegetable production. Nutr Cycl Agroecosystems 117:77–92. https://doi.org/10.1007/s10705-020-10057-x

    Article  Google Scholar 

  69. Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms 45(3):207–218

    Article  Google Scholar 

  70. Chardot V, Echevarria G, Gury M, Massoura S, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293(1):7–21

    Article  Google Scholar 

  71. Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293(1):107–119

    Article  Google Scholar 

  72. Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickelhyperaccumulator plant Alyssum bertolonii. Microb Ecol 48(2):209–217

    Article  Google Scholar 

  73. Schipper LA, Lee WG (2004) Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant Soil 262(1):151–158

    Article  Google Scholar 

  74. Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145(1):293–298

    Article  Google Scholar 

  75. Abou‐Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H ... Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

  76. Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123(1):131–138

    Article  Google Scholar 

  77. Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293(1):23–35

    Article  Google Scholar 

  78. DeGrood SH, Claassen VP, Scow KM (2005) Microbial community composition on native and drastically disturbed serpentine soils. Soil Biol Biochem 37(8):1427–1435

    Article  Google Scholar 

  79. Freitas H, Prasad MNV, Pratas J (2004) Analysis of serpentinophytes from north–east of Portugal for trace metal accumulation––relevance to the management of mine environment. Chemosphere 54(11):1625–1642

    Article  Google Scholar 

  80. Kumarathilaka, P., Vithanage, M., 2017. Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. J. Chem. 2017. https://doi.org/10.1155/2017/6180636

  81. Adams, M., Crawford, J., Field, D., Henakaarchchi, N., Jenkins, M., McBratney, A., ... & Wheeler, J., 2011. Discussion paper for the Soil Carbon Sequestration Summit, in: Managing the Soil-Plant System to Mitigate Atmospheric CO2. The United States Studies Centre at the University of Sydney.

  82. Gale M, Nguyen T, Moreno M, Gilliard-AbdulAziz KL (2021) Physiochemical properties of biochar and activated carbon from biomass residue: influence of process conditions to adsorbent properties. ACS Omega 6(15):10224–10233

    Article  Google Scholar 

  83. Mandal S, Pu S, Adhikari S, Ma H, Kim DH, Bai Y, Hou D (2021) Progress and future prospects in biochar composites: application and reflection in the soil environment. Crit Rev Environ Sci Technol 51(3):219–271

    Article  Google Scholar 

  84. Jeffery, S., 2010. Biochar application to soils — a critical scientific review of effects on soil properties, processes and functions.

  85. Elkhalifa S, Al-Ansari T, Mackey HR, McKay G (2019) Food waste to biochars through pyrolysis: a review. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2019.01.024

    Article  Google Scholar 

  86. Jeffery S, Bezemer TM, Cornelissen G, Kuyper TW, Lehmann J, Mommer L, Sohi SP, van de Voorde TFJ, Wardle DA, van Groenigen JW (2015) The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy. https://doi.org/10.1111/gcbb.12132

    Article  Google Scholar 

  87. Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940. https://doi.org/10.1016/j.chemosphere.2010.05.020

    Article  Google Scholar 

  88. Xu X, Schierz A, Xu N, Cao X (2016) Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon. J Colloid Interface Sci 463:55–60. https://doi.org/10.1016/j.jcis.2015.10.003

    Article  Google Scholar 

  89. Xu Y, Fang Z, Tsang EP (2016) In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Environ Sci Pollut Res 23:19164–19172. https://doi.org/10.1007/s11356-016-7117-z

    Article  Google Scholar 

  90. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  91. Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H (2020) A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J Hazard Mater 400:123242. https://doi.org/10.1016/j.jhazmat.2020.123242

    Article  Google Scholar 

  92. Kim Y, Ok JI, Vithanage M, Park YK, Lee J, Kwon EE (2019) Modification of biochar properties using CO2. Chem Eng J 372:383–389. https://doi.org/10.1016/j.cej.2019.04.170

    Article  Google Scholar 

  93. Choudhary TK, Khan KS, Hussain Q, Ahmad M, Ashfaq M (2019) Feed stock induced changes in composition and stability of biochar derived from different agricultural wastes. Arab J Geosci 12(19):1–13

    Article  Google Scholar 

  94. Qin P, Wang H, Yang X, He L, Müller K, Shaheen SM, ... Xu X (2018) Bamboo-and pigderived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere 198:450–459

  95. Sethupathi S, Zhang M, Rajapaksha AU, Lee SR, Mohamad Nor N, Mohamed AR, ... Ok YS (2017) Biochars as potential adsorbers of CH4, CO2 and H2S. Sustainability 9(1):121

  96. Vithanage M, Bandara T, Al-Wabel MI, Abduljabbar A, Usman ARA, Ahmad M, Ok YS (2018) Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperatures and application rates. Commun Soil Sci Plant Anal 49:635–643. https://doi.org/10.1080/00103624.2018.1435795

    Article  Google Scholar 

  97. Zhou N, Chen H, Feng Q, Yao D, Chen H, Wang H, ... Lu X (2017) Effect of phosphoric acid on the surface properties and Pb (II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J Clean Prod 165:221–230

  98. Hansen V, Müller-Stöver D, Munkholm LJ, Peltre C, Hauggaard-Nielsen H, Jensen LS (2016) The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study. Geoderma 269:99–107

    Article  Google Scholar 

  99. Gascó G, Paz-Ferreiro J, Álvarez ML, Saa A, Méndez A (2018) Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste management 79:395–403

    Article  Google Scholar 

  100. Qi F, Lamb D, Naidu R, Bolan NS, Yan Y, Ok YS, ... Choppala G (2018) Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466

  101. Bashir S, Hussain Q, Shaaban M, Hu H (2018) Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 211:632–639

    Article  Google Scholar 

  102. Khan KY, Ali B, Cui X, Feng Y, Yang X, Stoffella PJ (2017) Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicol Environ Saf 141:129–138

  103. Hua L, Zhang H, Wei T, Yang C, Guo J (2019) Effect of biochar on fraction and species of antimony in contaminated soil. J Soils Sediments 19(6):2836–2849

    Article  Google Scholar 

  104. Mahdi Z, El Hanandeh A, Yu Q (2017) Influence of pyrolysis conditions on surface characteristics and methylene blue adsorption of biochar derived from date seed biomass. Waste Biomass Valorization 8(6):2061–2073

    Article  Google Scholar 

  105. Świechowski K, Liszewski M, Bąbelewski P, Koziel JA, Białowiec A (2019) Fuel properties of torrefied biomass from pruning of oxytree. Data 4(2):55

    Article  Google Scholar 

  106. Ahmad M, Ok YS, Rajapaksha AU, Lim JE, Kim BY, Ahn JH, Lee YH, Al-Wabel MI, Lee SE, Lee SS (2016a) Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J Hazard Mater 301:179–186. https://doi.org/10.1016/j.jhazmat.2015.08.029

    Article  Google Scholar 

  107. Alburquerque JA, Salazar P, Barrón V, Torrent J, Del Campillo MDC, Gallardo A, Villar R (2013) Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev 33:475–484. https://doi.org/10.1007/s13593-012-0128-3

    Article  Google Scholar 

  108. Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  Google Scholar 

  109. Ahmad M, Moon DH, Vithanage M, Koutsospyros A, Lee SS, Yang JE, Lee SE, Jeon C, Ok YS (2014) Production and use of biochar from buffalo-weed (ambrosia trifida L.) for trichloroethylene removal from water. J Chem Technol Biotechnol 89:150–157. https://doi.org/10.1002/jctb.4157

    Article  Google Scholar 

  110. Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  111. Ahmad, M., Ok, Y.S., Rajapaksha, A.U., Lim, J.E., Kim, B.Y., Ahn, J.H., Lee, Y.H., Al-Wabel, M.I., Lee, S.E., Lee, S.S., 2016b. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 301 https://doi.org/10.1016/j.jhazmat.2015.08.029

  112. Usman, A.R.A., Al-Wabel, M.I., Ok, Y.S., Al-Harbi, A., Wahb-Allah, M., El-Naggar, A.H., Ahmad, M., Al-Faraj, A., Al-Omran, A., 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere.https://doi.org/10.1016/S1002-0160(15)60019-4

  113. Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci (China) 44:269–279. https://doi.org/10.1016/j.jes.2015.12.027

    Article  Google Scholar 

  114. Luo Y, Jiao Y, jie, Zhao, X. rong, Li, G. tong, Zhao, L. xin, Meng, H. bo, (2014) Improvement to maize growth caused by biochars derived from six feedstocks prepared at three different temperatures. J Integr Agric 13:533–540. https://doi.org/10.1016/S2095-3119(13)60709-1

    Article  Google Scholar 

  115. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils — to mobilize or to immobilize? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    Article  Google Scholar 

  116. Zhu, X., Chen, B., Zhu, L., **ng, B., 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ. Pollut. https://doi.org/10.1016/j.envpol.2017.04.032

  117. Yu K.L, Lau F, Show PL, Ong HC, Ling TC, Chen W, Poh NE, Chang J, 2017. Recent developments on algal biochar production and characterization Institute of Biological Sciences , Faculty of Science , University of Malaya , 50603 Kuala Bioseparation Research Group , Department of Chemical and Environmental Engineering , Departmen. Bioresour. Technol.

  118. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  119. Solaiman ZM, Anawar HM (2015) Application of biochars for soil constraints: challenges and solutions. Pedosphere. https://doi.org/10.1016/S1002-0160(15)30044-8

    Article  Google Scholar 

  120. Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41:682–689. https://doi.org/10.1016/j.orggeochem.2010.03.010

    Article  Google Scholar 

  121. Taraqqi-A-Kamal A, Atkinson CJ, Khan A, Zhang K, Sun P, Akther S, Zhang Y (2021) Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils. Plant Soil Environ 67(4):183–201

    Article  Google Scholar 

  122. Arthur E, Tuller M, Moldrup P, de Jonge LW (2015) Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma. https://doi.org/10.1016/j.geoderma.2015.01.001

    Article  Google Scholar 

  123. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Reshttps://doi.org/10.1016/j.still.2015.08.002

  124. Gregory SJ, Anderson CWN, Camps Arbestain M, McManus MT (2014) Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2014.03.035

    Article  Google Scholar 

  125. Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88:77–83. https://doi.org/10.1016/j.chemosphere.2012.02.066

    Article  Google Scholar 

  126. Zhao, B., Xu, R., Ma, F., Li, Y., Wang, L., 2016. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2016.10.020

  127. Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12. https://doi.org/10.1016/j.envint.2015.10.018

    Article  Google Scholar 

  128. Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1:339–344. https://doi.org/10.1021/ez5002209

    Article  Google Scholar 

  129. Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112. https://doi.org/10.1097/SS.0b013e3181981d9a

    Article  Google Scholar 

  130. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  Google Scholar 

  131. **ao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047. https://doi.org/10.1021/acs.est.7b06487

    Article  Google Scholar 

  132. Steiner C, Teixeira WG, Lehmann J, Nehls T, De MacÊdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290. https://doi.org/10.1007/s11104-007-9193-9

    Article  Google Scholar 

  133. Uchimiya M, Wartelle LH, Boddu VM (2012) Sorption of triazine and organophosphorus pesticides on soil and biochar. J Agric Food Chem 60:2989–2997. https://doi.org/10.1021/jf205110g

    Article  Google Scholar 

  134. Liang J, Tang S, Gong J, Zeng G, Tang W, Song B, Luo Y (2020) Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. J of hazard mater 385:121533

    Article  Google Scholar 

  135. Rékási M, Szili-Kovács T, Takács T, Bernhardt B, Puspán I, Kovács R, Uzinger N (2019) Improving the fertility of sandy soils in the temperate region by combined biochar and microbial inoculant treatments. Archives of Agronomy and Soil Science 65(1):44–57

    Article  Google Scholar 

  136. Thies, J.E., Rillig, M.C., 2012. Characteristics of biochar: biological properties. Biochar Environ. Manag. Sci. Technol. 85–105https://doi.org/10.4324/9781849770552

  137. Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x

    Article  Google Scholar 

  138. Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J., Cotrufo, M.F., 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 65. https://doi.org/10.1111/ejss.12097

  139. Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J., Amonette, J.E., 2010. An investigation into the reactions of biochar in soil, in: Australian Journal of Soil Research. https://doi.org/10.1071/SR10009

  140. Cho, D.W., Kwon, E.E., Kwon, G., Zhang, S., Lee, S.R., Song, H., 2017. Co-pyrolysis of paper mill sludge and spend coffee ground using CO2 as reaction medium. J. CO2 Util. 21. https://doi.org/10.1016/j.jcou.2017.09.003

  141. Luo X, Chen L, Zheng H, Chang J, Wang H, Wang Z, **ng B (2016) Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma 282:120–128. https://doi.org/10.1016/j.geoderma.2016.07.015

    Article  Google Scholar 

  142. Oleszczuk P, Ćwikła-Bundyra W, Bogusz A, Skwarek E, Ok YS (2016) Characterization of nanoparticles of biochars from different biomass. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2016.07.017

    Article  Google Scholar 

  143. Cui E, Wu Y, Zuo Y, Chen H (2016) Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.12.030

    Article  Google Scholar 

  144. Muhammad N, Dai Z, **ao K, Meng J, Brookes PC, Liu X, Wang H, Wu J, Xu J (2014) Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma. https://doi.org/10.1016/j.geoderma.2014.01.023

    Article  Google Scholar 

  145. Anyanwu, I.N., Alo, M.N., Onyekwere, A.M., Crosse, J.D., Nworie, O., Chamba, E.B., 2018. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol. Environ. Saf. 153 https://doi.org/10.1016/j.ecoenv.2018.02.005

  146. Zheng, H., Wang, X., Luo, X., Wang, Z., **ng, B., 2018. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation. Sci. Total Environ. 610–611 https://doi.org/10.1016/j.scitotenv.2017.08.166

  147. Whitman T, Zhu Z, Lehmann J (2014) Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ Sci Technol 48:13727–13734. https://doi.org/10.1021/es503331y

    Article  Google Scholar 

  148. Zheng, J., Chen, J., Pan, G., Liu, X., Zhang, X., Li, L., Bian, R., Cheng, K., **wei, Z., 2016. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ. 571 https://doi.org/10.1016/j.scitotenv.2016.07.135

  149. Lu H, Li Z, Fu S, Méndez A, Gascó G, Paz-Ferreiro J (2014) Can biochar and phytoextractors be jointly used for cadmium remediation? PLoS ONE 9:1–7. https://doi.org/10.1371/journal.pone.0095218

    Article  Google Scholar 

  150. Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132. https://doi.org/10.1016/j.agee.2014.04.010

    Article  Google Scholar 

  151. Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, **e Z (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2014.04.029

    Article  Google Scholar 

  152. Fang G, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou D (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48:1902–1910. https://doi.org/10.1021/es4048126

    Article  Google Scholar 

  153. Joseph S, Graber ER, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan GX, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. https://doi.org/10.4155/cmt.13.23

    Article  Google Scholar 

  154. Masiello CA, Chen Y, Gao X, Liu S, Cheng HY, Bennett MR, Rudgers JA, Wagner DS, Zygourakis K, Silberg JJ (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ Sci Technol 47:11496–11503. https://doi.org/10.1021/es401458s

    Article  Google Scholar 

  155. Qin G, Gong D, Fan MY (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2013.07.004

    Article  Google Scholar 

  156. Quilliam, R.S., Glanville, H.C., Wade, S.C., Jones, D.L., 2013. Life in the “charosphere” — does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol. Biochem. 0.1016/j.soilbio.2013.06.004

  157. Lazarus BE, Richard JH., Claassen VP, Dell REO, Ferrell MA, 2011. Species specific plant-soil interactions influence plant distribution on serpentine soils 327–344. https://doi.org/10.1007/s11104-010-0698-2

  158. Becquer T, Quantin C, Boudot JP (2010) Toxic levels of metals in Ferralsols under natural vegetation and crops in New Caledonia. Eur J Soil Sci 61:994–1004. https://doi.org/10.1111/j.1365-2389.2010.01294.x

    Article  Google Scholar 

  159. Glover, L.J., Eick, M.J., Brady, P. V., 2002. Desorption kinetics of cadmium2+ and lead2+ from goethite: influence of time and organic acids. Soil Sci. Soc. Am. J. 66. https://doi.org/10.2136/sssaj2002.7970

  160. Fendorf E, S., (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71. https://doi.org/10.1016/0016-7061(94)00062-F

    Article  Google Scholar 

  161. Becquer, T., Quantin, C., Sicot, M., Boudot, J.P., 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301 https://doi.org/10.1016/S0048-9697(02)00298-X

  162. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int. https://doi.org/10.1016/j.envint.2005.02.003

    Article  Google Scholar 

  163. Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg 57:196–204. https://doi.org/10.1016/j.biombioe.2013.07.019

    Article  Google Scholar 

  164. Jiang, W., Liu, D., Hou, W., 2001. Hyperaccumulation of cadmium by roots , bulbs and shoots of garlic ( Allium sativum L .) 76, 9–13.

  165. Bruce Anderson Ann de Peyster Shayne Gad P.J. Hakkinen Michael Kamrin Betty Locey Harihara Mehendale Carey Pope Lee ShugartBruce Anderson Ann de Peyster Shayne Gad P.J. Hakkinen Michael Kamrin Betty Locey Harihara Mehendale Carey Pope Lee Shugart, 2005. Encyclopedia of Toxicology.

  166. Neilson, S., Rajakaruna, N., 2015. Phytoremediation of agricultural soils: using plants to clean metal- contaminated arable land, in: Phytoremediation: Management of Environmental Contaminants, Volume 1. https://doi.org/10.1007/978-3-319-10395-2_11

  167. Kołtowski M, Oleszczuk P (2016) Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals. Environ Toxicol Chem 35:1321–1328. https://doi.org/10.1002/etc.3246

    Article  Google Scholar 

  168. Calvelo Pereira R, Kaal J, Camps Arbestain M, Pardo Lorenzo R, Aitkenhead W, Hedley M, Macías F, Hindmarsh J, Maciá-Agulló JA (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42:1331–1342. https://doi.org/10.1016/j.orggeochem.2011.09.002

    Article  Google Scholar 

  169. Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889. https://doi.org/10.1021/es103752u

    Article  Google Scholar 

  170. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. https://doi.org/10.1016/j.orggeochem.2006.06.022

    Article  Google Scholar 

  171. O’Connor, D., Peng, T., Zhang, J., Tsang, D.C.W., Alessi, D.S., Shen, Z., Bolan, N.S., Hou, D., 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619–620 https://doi.org/10.1016/j.scitotenv.2017.11.132

  172. Buss, W., Graham, M.C., Shepherd, J.G., Mašek, O., 2016. Suitability of marginal biomass-derived biochars for soil amendment. Sci. Total Environ. 547. https://doi.org/10.1016/j.scitotenv.2015.11.148

  173. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  174. Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480. https://doi.org/10.1016/j.envpol.2010.10.016

    Article  Google Scholar 

  175. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. https://doi.org/10.1016/S0045-6535(99)00283-0

    Article  Google Scholar 

  176. Porter SK, Scheckel KG, Impellitteri CA, Ryan JA (2004) Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit Rev Environ Sci Technol 34:495–604. https://doi.org/10.1080/10643380490492412

    Article  Google Scholar 

  177. Berek, A.K., Hue, N., Ahmad, A., 2011. Beneficial use of biochar to correct soil acidity 3–5.

  178. Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224. https://doi.org/10.1016/j.chemosphere.2004.05.020

    Article  Google Scholar 

  179. Herath I, Kumarathilaka P, Navaratne A, Rajakaruna N, Vithanage M (2014) Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J Soils Sediments 15:126–138. https://doi.org/10.1007/s11368-014-0967-4

    Article  Google Scholar 

  180. Akcil A, Erust C, Ozdemiroglu S, Viviana Fonti FB (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36. https://doi.org/10.1016/j.jclepro.2014.08.009

    Article  Google Scholar 

  181. Bannon DI, Drexler JW, Fent GM, Casteel SW, Hunter PJ, Brattin WJ, Major MA (2009) Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ Sci Technol 43:9071–9076. https://doi.org/10.1021/es901834h

    Article  Google Scholar 

  182. Méndez, A., Paz-Ferreiro, J., Araujo, F., Gascó, G., 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. J. Anal. Appl. Pyrolysis. https://doi.org/10.1016/j.jaap.2014.02.001

  183. Cárdenas- Aguiar, E., Gascó, G., Paz-Ferreiro, J., Méndez, A., 2017. The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. Int. Biodeterior. Biodegrad https://doi.org/10.1016/j.ibiod.2017.05.014

  184. Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22:5370–5382. https://doi.org/10.1007/s11356-014-4006-1

    Article  Google Scholar 

  185. Hartley, W., Dickinson, N.M., Riby, P., Lepp, N.W., 2009. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ. Polluthttps://doi.org/10.1016/j.envpol.2009.05.011

  186. Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419. https://doi.org/10.1021/es00020a008

    Article  Google Scholar 

  187. Choppala G, Bolan N, Kunhikrishnan A, Bush R (2016) Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144:374–381. https://doi.org/10.1016/j.chemosphere.2015.08.043

    Article  Google Scholar 

  188. Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70:298–305. https://doi.org/10.1016/j.chemosphere.2007.06.007

    Article  Google Scholar 

  189. Kołtowski MBC, Skubiszewska-Zięba J, Oleszczuk P, Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, P. 2017. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicol. Environ. Saf. 136, 119–125. https://doi.org/10.1016/j.ecoenv.2016.10.033

  190. Zhang JianYun ; Gao CaiHui ; Zhu Hui ; Zhong ShuiGen ; Yang WenYan ; Zheng JunLong ; Wu ShengChun ; Shan ShengDao ; Wang ZhiRong ; Zhang ** ; Cao ZhiHong ; Christie, P., Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, C., 2017. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil. J. Zhejiang A&F Univ. 34, 543–551

  191. Shen Y (2015) Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew Sustain Energy Rev 43:281–295. https://doi.org/10.1016/j.rser.2014.11.061

    Article  Google Scholar 

  192. Solaiman ZM, Anawar HM (2015) Application of biochars for soil constraints: challenges and solutions. Pedosphere 25:631–638. https://doi.org/10.1016/S1002-0160(15)30044-8

    Article  Google Scholar 

  193. Saifullah D, S., Naeem, A., Rengel, Z., Naidu, R., (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335. https://doi.org/10.1016/j.scitotenv.2017.12.257

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the resources and facilities of the Pondicherry University, Puducherry, India.

Author information

Authors and Affiliations

Authors

Contributions

Arvind Kumar: Conceptualization, Investigation, Validation, Formal analysis, Writing—Original Draft, Visualization. Duraisamy Ramamoorthy: Conceptualization, Writing—review & editing, Supervision. Naveen Kumar: Writing—Original Draft. Ravikant Verma: Writing—review & editing. Agam Kumar: Writing—review & editing. Daneshver Kumar Verma: Writing—review & editing. Ilakiya Jayabalan: Writing—review & editing. Binny M. Marwein: Writing—review & editing. Krishna Kumar Jaiswal: Conceptualization, Writing—review & editing, Supervision.

Corresponding authors

Correspondence to Duraisamy Ramamoorthy or Krishna Kumar Jaiswal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ramamoorthy, D., Kumar, N. et al. Investigation on the potential of eco-friendly bio-char for amendment in serpentine soils and immobilization of heavy metals contaminants: a review. Biomass Conv. Bioref. 13, 16585–16605 (2023). https://doi.org/10.1007/s13399-021-02257-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02257-4

Keywords

Navigation