Log in

Production, Testing, Modeling, Characterization, and Application of Composite Material from Melting Unsorted Plastic Waste

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive work involving testing, modeling and application of composite material produced from a vertical induction furnace using unsorted plastic waste as raw material. The work is novel because studies based on such a unique combination, i.e., between the raw material and the melting equipment, are not available in the literature. Here, the solid phase of the composite material from the furnace was targeted for tensile testing, where uncertain strain–stress relationships were found, mainly indicated by different tensile strengths between 3.5 and 6.69 MPa. In response to such uncertainty, a material model is proposed here by using a statistical approach to capture random microstructures of such a composite material. Meanwhile, to support the tensile tests, material characterizations were carried out using SEM, EDX and Raman spectroscopy, which not only revealed the presence of particle impurities but also provided information on chemical elemental compositions. Finally, a promising application of such a composite material in a house building project is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Khurshid, M.B.; Qureshi, N.A.; Hussain, A.; Iqbal, M.J.: Enhancement of hot mix asphalt (HMA) properties using waste polymers. Arab. J. Sci. Eng. 44, 8239–8248 (2019)

    Article  Google Scholar 

  2. Al-Salem, S.M.; Lettieri, P.; Baeyens, J.: The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Progress Energy Combust. Sci. 36(1), 103–129 (2010)

    Article  Google Scholar 

  3. Thiam, M.; Fall, M.: Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder. Constr. Build. Mater. 302, 124190 (2021)

    Article  Google Scholar 

  4. Mewes, D.; Sujessy, L.: The application of a solar parabolic trough collector for the melting of plastic waste. In: Advanced Studies in Energy Efficiency and Built Environment for Develo** Countries, pp. 169–178. Springer (2019)

  5. Ronkay, F.; Molnar, B.; Gere, D.; Czigany, T.: Plastic waste from marine environment: demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag 119, 101–110 (2021)

    Article  Google Scholar 

  6. Medher, A.H.; Al-Hadithi, A.I.; Hilal, N.: The possibility of producing self-compacting lightweight concrete by using expanded polystyrene beads as coarse aggregate. Arab. J. Sci. Eng. 46, 4253–4270 (2021)

    Article  Google Scholar 

  7. Alqahtani, F.K.: Development of composite pet plastic-based aggregate and its utilization in green lightweight concrete. Arab. J. Sci. Eng. 47(10), 13397–13406 (2022)

    Article  Google Scholar 

  8. Bazargan, A.; McKay, G.: A review-synthesis of carbon nanotubes from plastic wastes. Chem. Eng. J. 195, 377–391 (2012)

    Article  Google Scholar 

  9. Eldahshory, A.I.; Emara, K.; Abd-Elhady, M.S.; Ismail, M.A.: High quality and maximizing the production of CNTs from the pyrolysis of waste polypropylene. Arab. J. Sci. Eng. 48(7), 8655–8666 (2023)

    Article  Google Scholar 

  10. Oldham, J.W.H.; Ubbelohde, A.R.J.P.: Melting and crystal structure. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 176(964), 50–75 (1940)

    Google Scholar 

  11. **ang, M.; Yang, Z.; Zhou, S.; Lu, T.; Zhang, S.; Sun, L.; Dong, S.: Polymer composites completely derived from waste: the crystalline structure and the mechanical enhancement effect. ACS Appl. Polym. Mater. 3(7), 3679–3684 (2021)

    Article  Google Scholar 

  12. Rubinstein, M.; Colby, R.H.; et al.: Polymer Physics, vol. 23. Oxford University Press, New York (2003)

    Book  Google Scholar 

  13. Lawson, J.W.; Srivastava, D.: Formation and structure of amorphous carbon char from polymer materials. Phys. Rev. B 77(14), 144209 (2008)

    Article  Google Scholar 

  14. Cruz, M.B.; Saikawa, E.; Hengstermann, M.; Ramirez, A.; McCracken, J.P.; Thompson, L.M.: Plastic waste generation and emissions from the domestic open burning of plastic waste in Guatemala. Environ. Sci. Atmos. 3(1), 156–167 (2023)

    Article  Google Scholar 

  15. Sunardi, S.; Istikowati, W. T.; Waluyo, S.; Sarifudin, Y.: Tungku Induksi Peleburan Sampah Plastik Tipe Vertikal (2023)

  16. Leese, W.E.: Manufacture of structural members from solid waste. US Patent 5,925,296 (1999)

  17. Hassan, M.; Mohanty, A.K.; Misra, M.: 3D printing in upcycling plastic and biomass waste to sustainable polymer blends and composites: a review. Mater. Des. 237, 112558 (2023)

    Article  Google Scholar 

  18. Akhras, M.H.; Freudenthaler, P.J.; Straka, K.; Fischer, J.: from bottle caps to frisbee—a case study on mechanical recycling of plastic waste towards a circular economy. Polymers 15(12), 2685 (2023)

    Article  Google Scholar 

  19. Koottatep, T.: Plastic-to-values: technologies and applications. Marine Plastics Abatement, p. 219 (2023).

  20. Turku, I.; Keskisaari, A.; Kärki, T.; Puurtinen, A.; Marttila, P.: Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 161, 469–476 (2017)

    Article  Google Scholar 

  21. Fang, C.; Nie, L.; Liu, S.; Yu, R.; An, N.; Li, S.: Characterization of polypropylene–polyethylene blends made of waste materials with compatibilizer and nano-filler. Compos. Part B Eng. 55, 498–505 (2013)

    Article  Google Scholar 

  22. Zekkos, D.: Experimental evidence of anisotropy in municipal solid waste. In: Multilevel Modeling of Secure Systems in QoP-ML, p. 69 (2015)

  23. de Luna, A.M.; Shaikh, F.U.A.: Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Constr. Build. Mater. 265, 120331 (2020)

    Article  Google Scholar 

  24. Miyata, T.; Masuko, T.: Crystallization Behaviour of poly(l-lactide). Polymer 39(22), 5515–5521 (1998)

    Article  Google Scholar 

  25. Anderson, I.: Mechanical properties of specimens 3d printed with virgin and recycled polylactic acid. 3D Print. Addit. Manuf. 4(2), 110–115 (2017)

    Article  Google Scholar 

  26. Getor, R.Y.; Mishra, N.; Ramudhin, A.: The role of technological innovation in plastic production within a circular economy framework. Resour. Conserv. Recycl. 163, 105094 (2020)

    Article  Google Scholar 

  27. Chacon, F. A.; Brouwer, M. T.; van Velzen, E. T.; Smeding, I. W.: A first assessment of the impact of impurities in PP and PE recycled plastics (No. 2030). Wageningen Food & Biobased Research (2020)

  28. Thoden van Velzen, E.U.; Chu, S.; Alvarado Chacon, F.; Brouwer, M.T.; Molenveld, K.: The impact of impurities on the mechanical properties of recycled polyethylene. Packag. Technol. Sci. 34(4), 219–228 (2021)

    Article  Google Scholar 

  29. Van Soest, J.J.G.; Knooren, N.: Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci. 64(7), 1411–1422 (1997)

    Article  Google Scholar 

  30. Abdelmola, F.; Carlsson, L.A.: State of water in void-free and void-containing epoxy specimens. J. Reinf. Plastics Compos. 38(12), 556–566 (2019)

    Article  Google Scholar 

  31. Safronava, N.; Lyon, R.E.; Crowley, S.; Stoliarov, S.I.: Effect of moisture on ignition time of polymers. Fire Technol. 51, 1093–1112 (2015)

    Article  Google Scholar 

  32. Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V.: Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 53(12), 1579–1669 (2019)

    Article  Google Scholar 

  33. Brahim, A.O.; Capozucca, R.; Khatir, S.; Magagnini, E.; Benaissa, B.; Wahab, M.A.; Cuong-Le, T.: Artificial neural network and YUKI algorithm for notch depth prediction in X70 steel specimens. Theor. Appl. Fracture Mech. 129, 104227 (2024)

    Article  Google Scholar 

  34. Japanese Industrial Standard (JIS) Z 2201: Test pieces for tensile test for metallic materials. Technical report, (1998)

  35. Itskov, M.; Khiêm, V.N.; Waluyo, S.: Electroelasticity of dielectric elastomers based on molecular chain statistics. Math. Mech. Solids 24(3), 862–873 (2019)

    Article  MathSciNet  Google Scholar 

  36. Khiêm, V.N.; Itskov, M.: Analytical network-averaging of the tube model: rubber elasticity. J. Mech. Phys. Solids 95, 254–269 (2016)

    Article  MathSciNet  Google Scholar 

  37. Waluyo, S.: Composite dielectric elastomers modeling based on statistical mechanics. Mech. Res. Commun 110, 103623 (2020)

    Article  Google Scholar 

  38. Bokobza, L.; Bruneel, J.L.; Couzi, M.: Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chem. Phys. Lett. 590, 153–159 (2013)

    Article  Google Scholar 

  39. Bokobza, L.; Bruneel, J.L.; Couzi, M.: Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1(1), 77–94 (2015)

    Google Scholar 

  40. Allen, V.; Kalivas, J.H.; Rodriguez, R.G.: Post-consumer plastic identification using Raman spectroscopy. Appl. Spectrosc. 53(6), 672–681 (1999)

    Article  Google Scholar 

  41. Ehrenstein, G.W.: Polymeric materials: structure, properties, applications. Carl Hanser Verlag GmbH Co KG (2012)

  42. Kretschmann, D.E.: Mechanical properties of wood. Environments 5, 34 (2010)

  43. Hira, A.; Duffield, C.F.; Gad, E.F.: Seismic design requirements for non-structural components of highrise buildings. In: Internationai Conference on Advancement in Design, Construction, Construction Management and Maintenance of Building Structures, Bałi, Indonesia, Part 1, pp. 289–296 (2002)

  44. Zara, A.; Belaidi, I.; Khatir, S.; Brahim, A.O.; Boutchicha, D.; Wahab, M.A.: Damage detection in GFRP composite structures by improved artificial neural network using new optimization techniques. Compos. Struct. 305, 116475 (2023)

  45. Fahem, N.; Belaidi, I.; Brahim, A.O.; Noori, M.; Khatir, S.; Wahab, M.A.: Prediction of resisting force and tensile load reduction in GFRP composite materials using Artificial Neural Network-Enhanced Jaya Algorithm. Compos. Struct. 304, 116326 (2023)

Download references

Acknowledgements

We would like to thank for the financial supports in the period of 2022-2023 from both the PRTKS-BRIN Republic Indonesia and Universitas Jenderal Soedirman (UNSOED) as well as for Reza Azizul from Department of Mechanical Engineering UNSOED for preparing specimens for the tensile tests. Lastly, we would like to dedicate this paper to Ogi Ivano (PRTKS-BRIN, 1994-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugeng Waluyo.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for publication

We give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within our manuscript to be published in the Arabian Journal for Science and Engineering.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadir, A.M., Zenal, H., Hatta, I. et al. Production, Testing, Modeling, Characterization, and Application of Composite Material from Melting Unsorted Plastic Waste. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09186-0

Keywords

Navigation