Log in

Dynamic Path Planning of Vehicles Based on the Adaptive Potential Field and Hierarchical Replacement Immune Algorithm

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A dynamic path planning method combining the adaptive potential field with the hierarchical replacement immune algorithm is proposed to realize the optimal navigation path and real-time obstacle avoidance. An improved ant-crawling mechanism, which incorporates the initial pheromones and heuristic information, is designed to achieve the initial population viability. Then to select superior antibodies from this initial population, the elite retention strategy and the roulette approach are applied simultaneously. According to the affinity, the number of antibodies is adaptively adjusted using the novel clone hierarchy model. Meanwhile, a new replacement mutation operator and adaptive replacement probability function are designed to produce better individuals. Finally, an adaptive-potential-field obstacle avoidance strategy is introduced to predict the imminent collision between vehicles and dynamic obstacles and activate the artificial potential field to replan the local path. The experiments prove that the method can improve the quality of the global path and realize real-time dynamic obstacle avoidance to ensure unmanned vehicle safety. The results show that the program running time, convergence iterations and the number of turns can be reduced by 87.35, 64.85 and 18.18%, respectively, in the complex environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Wang, X.D.; Qin, X.S.; Zhang, H.Y.; Minchala, L.I.: Cognitive granular-based path planning and tracking for intelligent vehicle with multi-segment Bezier curve stitching. Intell Autom Soft Comput 37(1), 385–400 (2023)

    Article  Google Scholar 

  2. He, Z.N.; Bao, Y.D.; Yu, Q.; Lu, P.B.; He, Y.; Liu, Y.F.: Dynamic path planning method for headland turning of unmanned agricultural vehicles. Comput. Electron. Agric. 206, 107699 (2023)

    Article  Google Scholar 

  3. Chen, Y.M.; Hu, C.; Qin, Y.C.; Li, M.J.; Song, X.L.: Path planning and robust fuzzy output-feedback control for unmanned ground vehicles with obstacle avoidance. Proc. Inst. Mech. Eng. Part D—J. Autom. Eng. 235(4), 933–944 (2021)

    Article  Google Scholar 

  4. Zhang, C.X.; Xu, X.; Zhang, X.L.; Zhou, X.; Lu, Y.; Zhang, Y.C.: A data-driven fault detection and diagnosis method via just-in-time learning for unmanned ground vehicles. Automatika 64(2), 277–290 (2023)

    Article  Google Scholar 

  5. Bautista-Camino, P.; Barranco-Gutierrez, A.; Cervantes, I.; Rodriguez-Licea, M.; Prado-Olivarez, J.; Perez-Pinal, F.J.: Local path planning for autonomous vehicles based on the natural behavior of the biological action-perception motion. Energies 15(5), 1–23 (2022)

    Article  Google Scholar 

  6. Li, Q.Q.; Xu, Y.Q.; Bu, S.Q.; Yang, J.F.: Smart vehicle path planning based on modified PRM algorithm. Sensors 22(17), 1–13 (2022)

    Article  Google Scholar 

  7. Li, Y.H.; Fan, J.K.; Liu, Y.; Wang, X.Y.: Path planning and path tracking for autonomous vehicle based on MPC with adaptive dual-horizon-parameters. Int. J. Automot. Technol. 23(5), 1239–1253 (2022)

    Article  Google Scholar 

  8. Ran, L.M.; Ran, S.M.; Meng, C.M.: Green city logistics path planning and design based on genetic algorithm. Peerj Comput. Sci. 9, 1–15 (2023)

    Article  Google Scholar 

  9. Wang, H.B.; Zhang, J.Q.; Dong, J.: Application of ant colony and immune combined optimization algorithm in path planning of unmanned craft. AIP Adv. 12(2), 1–13 (2022)

    Article  Google Scholar 

  10. Li, C.Q.; **ao, J.; Liu, Y.; Qi, G.H.; Qin, H.; Zhou, J.: An adaptive immune ant colony optimization for reducing energy consumption of automatic inspection path planning in industrial wireless sensor networks. J. Sens. 2021, 1–11 (2021)

    Article  Google Scholar 

  11. Liu, L.F.; Niu, Z.W.: Artificial immune algorithm-based airplane path planning under complicated environment. Int. J. Circuits Syst. Signal Process. 15, 792–799 (2021)

    Article  Google Scholar 

  12. Lai, X.; Wu, D.; Wu, D.; Li, J.H.; Yu, H.: Enhanced DWA algorithm for local path planning of mobile robot. Ind. Robot—Int. J. Robot. Res. Appl. 50(1), 186–194 (2023)

    Article  Google Scholar 

  13. Szczepanski, R.; Bereit, A.; Tarczewski, T.: Efficient local path planning algorithm using artificial potential field supported by augmented reality. Energies 14(20), 1–14 (2021)

    Article  Google Scholar 

  14. Szczepanski, R.; Tarczewski, T.; Erwinski, K.: Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access 10, 39729–39742 (2022)

    Article  Google Scholar 

  15. Yang, W.L.; Wu, P.; Zhou, X.Q.; Lv, H.L.; Liu, X.K.; Zhang, G.; Hou, Z.C.; Wang, W.J.: Improved artificial potential field and dynamic window method for amphibious robot fish path planning. Appl. Sci. 11(5), 1–15 (2021)

    Article  Google Scholar 

  16. Wang, H.B.; Yin, P.H.; Zheng, W.; Wang, H.; Zuo, J.S.: Mobile robot path planning based on improved A* algorithm and dynamic window method. Robot. 42(03), 346–353 (2020)

    Google Scholar 

  17. Dai, T.L.; Li, B.H.; Zang, Y.L.; Dai, H.; Yu, Z.Q.; Chen, G.: PORP: parallel optimization strategy of route planning for self-driving vehicles. J. Zhejiang Univer. (Eng. Sci.) 56(02), 329–337 (2022)

    Google Scholar 

  18. Mohanty, P.K.; Kodapurath, A.A.; Singh, R.K.: A hybrid artificial immune system for mobile robot navigation in unknown environments. Iran. J. Sci. Technol.—Trans. Electr. Eng. 44(04), 1619–1631 (2020)

    Article  Google Scholar 

  19. Yuan, M.X.; Jiang, Y.F.; Hua, X.B.; Wang, B.B.; Shen, Y.: A real-time immune planning algorithm incorporating a specific immune mechanism for multi-robots in complex environments. Proc. Inst. Mech. Eng. Part I—J. Syst. Control Eng. 231(1), 29–42 (2017)

    Article  Google Scholar 

  20. Feng, K.; He, X.N.; Wang, M.L.; Chu, X.G.; Wang, D.W.; Yue, D.S.: Path optimization of agricultural robot based on immune ant colony: B-spline interpolation algorithm. Math. Probl. Eng. 2022, 1–18 (2022)

    Google Scholar 

  21. Fan, J.Y.; Chu, Y.; Yue, D.; Hong, L.: A path planning algorithm of deterministic mobile robot based on immune mechanism. Control Decis. 36(10), 2418–2426 (2021)

    Google Scholar 

  22. Yang, F.; Fang, X.; Gao, F.; Zhou, X.J.; Li, H.; **, H.B.; Song, Y.: Obstacle avoidance path planning for UAV based on improved RRT algorithm. Discrete Dyn. Nat. Soc. 2022, 1–9 (2022)

    Google Scholar 

  23. Liu, B.Y.; Ye, X.B.; Wang, X.B.; Jia, J.; Wang, T.: Path avoidance algorithm of unmanned ground vehicle based on improved artificial potential field. J. Chin. Inert. Technol. 28(6), 769–777 (2020)

    Google Scholar 

  24. Zhu, S.N.; Zhu, W.Y.; Zhang, X.Q.; Cao, T.: Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance. Int. J. Adv. Rob. Syst. 17(3), 1–14 (2020)

    Google Scholar 

  25. Sarkar, R.; Barman, D.; Chowdhury, N.: Domain knowledge based genetic algorithms for mobile robot path planning having single and multiple targets. J. King Saud Univer.-Comput. Inf. Sci. 34(7), 4269–4283 (2022)

    Google Scholar 

  26. Liu, C.; Liu, A.Z.; Wang, R.C.; Zhao, H.B.; Lu, Z.G.: Path planning algorithm for multi-locomotion robot based on multi-objective genetic algorithm with elitist strategy. Micromachines. 13(4), 1–30 (2022)

    Article  Google Scholar 

  27. Zhang, M.; Ren, H.X.; Zhou, Y.: Research on global ship path planning method based on improved ant colony algorithm. IEEE Open J. Intell. Transp. Syst. 4, 143–152 (2023)

    Article  Google Scholar 

  28. Tan, Y.S.; Ouyang, J.; Zhang, Z.; Lao, Y.L.; Wen, P.J.: Path planning for spot welding robots based on improved ant colony algorithm. Robotica 41(3), 926–938 (2023)

    Article  Google Scholar 

  29. Zhai, L.Z.; Feng, S.H.: A novel evacuation path planning method based on improved genetic algorithm. J. Intell. Fuzzy Syst. 42(3), 1813–1823 (2022)

    Article  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (No. 62204168), Tian** Science and Technology Research Project (Nos. 20YDTPJC00160, 21YDTPJC00780), and Science Research Program of Tian** Education Committee (No. 2019KJ101).

Author information

Authors and Affiliations

Authors

Contributions

Yuheng Pan: Conceptualization, Funding acquisition, Writing-review & editing. Yixin Tao: Software, Data curation, Writing-original draft. Weijia Lu: Resources, Methodology, Investigation. Guoyan Li: Visualization, Supervision. Jia Cong: Software, Validation.

Corresponding author

Correspondence to Weijia Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Tao, Y., Lu, W. et al. Dynamic Path Planning of Vehicles Based on the Adaptive Potential Field and Hierarchical Replacement Immune Algorithm. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08541-x

Keywords

Navigation