Log in

Physical Properties of Ba2XIO6 (X = Ag, Na) Double Perovskite Oxides for Energy Harvesting Devices

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Herein, we have presented systematic DFT calculations for physical properties of barium-based periodate double perovskite oxides Ba2AgIO6 and Ba2NaIO6 in cubic phase. Our calculations show that both compounds are stable in cubic phase with tolerance factor (τG) of 0.96/0.92 for Ag/Na based studied compounds. Optimization spectra reveal the nonmagnetic nature with lattice constants 8.46/8.48 Å for Ba2(Ag/Na)IO6 DPs. Band gaps (Eg) for both compounds calculated with modified Becke–Johnson (mBJ) potential are recorded as 1.9 eV and 3.2 eV, respectively. Furthermore, optical parameters have been calculated, which reveals the Ba2AgIO6 as a potential candidate for solar energy harvesting, while the wide optical band gap of Ba2NaIO6 makes it suitable for UV sensors. Variations of temperature dependent thermal conductivity (κ), electrical conductivity (σ), see-beck coefficient (S), power factor (PF) and figure of merit (ZT) have also been investigated. Recorded ZT values are 0.63 and 0.75 for Ba2AgIO6 and Ba2NaIO6, respectively, paired with strong optical absorption which suggest that both compounds are potential candidate for different optoelectronic and thermoelectric devices for energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oró-Solé, J., et al.: Synthesis, anion order and magnetic properties of RVO3xNx perovskites (R = La, Pr, Nd; 0 ≤ x ≤ 1). J. Mater. Chem. C 2(12), 2212–2220 (2014). https://doi.org/10.1039/c3tc32362e

    Article  Google Scholar 

  2. Shiogai, J.; Chida, T.; Hashimoto, K.: Signature of band inversion in perovskite BaSn1xPbxO3 thin-film alloys. cond-mat.mtrl-sci 101, 1–21 (2020)

    Google Scholar 

  3. Sohail, A., et al.: Half metallic ferromagnetism and optoelectronic characteristics of V doped BaTiO3 compound: a DFT study. J. Ovonic Res. 17(5), 461–469 (2021)

    Google Scholar 

  4. Wu, B., et al.: Strong self-trap** by deformation potential limits photovoltaic performance in bismuth double perovskite. Sci. Adv. 7(8), 1–12 (2021). https://doi.org/10.1126/sciadv.abd3160

    Article  Google Scholar 

  5. Nazir, A., et al.: Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications. Z. Phys. Chem. 235(6), 769–784 (2021). https://doi.org/10.1515/zpch-2019-1558

    Article  Google Scholar 

  6. Vlazan, P.; Stoia, M.; Poienar, M.; Sfirloaga, P.: Phase transition behaviour and physicochemical properties of KNbO3 ceramics. Ceram. Int. 43(8), 5963–5967 (2017). https://doi.org/10.1016/j.ceramint.2017.01.120

    Article  Google Scholar 

  7. Trabelsi, H., et al.: Evaluation of the relationship between the magnetism and the optical properties in SrTiO3δ defective systems: experimental and theoretical studies. J. Magn. Magn. Mater. 478, 175–186 (2019). https://doi.org/10.1016/j.jmmm.2019.01.115

    Article  Google Scholar 

  8. Kumar, A.; Kumar, M.; Singh, R.P.: Magnetic, opto-electronic, and thermodynamic properties of half-metallic double perovskite oxide, Ba2YbTaO6: a density functional theory study. J. Mater. Sci. Mater. Electron. 32(10), 12951–12965 (2021). https://doi.org/10.1007/s10854-021-05637-8

    Article  Google Scholar 

  9. Faizan, M., et al.: First-principles study of the double perovskites Sr2XOsO6 (X = Li, Na, Ca) for spintronics applications. Bull. Mater. Sci. 39(6), 1419–1425 (2016). https://doi.org/10.1007/s12034-016-1288-6

    Article  Google Scholar 

  10. Nabi, M.; Gupta, D.C.: Study of the magneto-electronic, optical, thermal and thermoelectric applications of double perovskites Ba2MTaO6 (M = Er, Tm). RSC Adv. 9(28), 15852–15867 (2019). https://doi.org/10.1039/C9RA01797F

    Article  Google Scholar 

  11. Maiti, T.; Saxena, M.; Roy, P.: Double perovskite (Sr2B′B″O6) oxides for high-temperature thermoelectric power generation—a review. J. Mater. Res. 34(1), 107–125 (2019). https://doi.org/10.1557/jmr.2018.376

    Article  Google Scholar 

  12. Kubel, F.; Wandl, N.; Pantazi, M.; D’Anna, V.; Hagemann, H.: The periodate-based double perovskites M2NaIO6 (M = Ca, Sr, and Ba). Z. Anorgan. Allg. Chem. 639(6), 892–898 (2013). https://doi.org/10.1002/zaac.201200555

    Article  Google Scholar 

  13. Jishi, R.A.; Appleton, R.J.; Guzman, D.M.: Electronic and optical properties of ultrawide bandgap perovskite semiconductors via first principles calculations. Appl. Phys. Lett. 117(23), 1–9 (2020). https://doi.org/10.1063/5.0027881

    Article  Google Scholar 

  14. Djefal, A., et al.: Half-metallic ferromagnetism in double perovskite Ca2CoMoO6 compound: DFT + U calculations. Spin 7(4), 1750009 (2017). https://doi.org/10.1142/S2010324717500096

    Article  Google Scholar 

  15. Mir, S.A.; Gupta, D.C.: Scrutinizing the stability and exploring the dependence of thermoelectric properties on band structure of 3D–3D metal-based double perovskites Ba2FeNiO6 and Ba2CoNiO6. Sci. Rep. 11(1), 1–13 (2021). https://doi.org/10.1038/s41598-021-90027-7

    Article  Google Scholar 

  16. Morss, L.R.; Fuger, J.; Jenkins, H.D.B.: Thermodynamics of actinide perovskite-type oxides I. Enthalpy of formation of Ba2MgUO6 and Ba2MgNpO6. J. Chem. Thermodyn. 14(4), 377–384 (1982)

    Article  Google Scholar 

  17. Shakoor, F., et al.: Physical characteristics of barium based cubic perovskites. Chem. Phys. Lett. 779, 138835 (2021). https://doi.org/10.1016/J.CPLETT.2021.138835

    Article  Google Scholar 

  18. HasbElkhalig, M.; Elhag, A.: DFT study on the crystal, electronic and magnetic structures of tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe) via GGA and GGA+U. Results Phys. 9, 793–805 (2018). https://doi.org/10.1016/j.rinp.2018.03.055

    Article  Google Scholar 

  19. Sahnoun, O.; Bouhani-Benziane, H.; Sahnoun, M.; Driz, M.; Daul, C.: Ab initio study of structural, electronic and thermodynamic properties of tungstate double perovskites Ba2MWO6 (M = Mg, Ni, Zn). Comput. Mater. Sci. 77, 316–321 (2013). https://doi.org/10.1016/j.commatsci.2013.04.053

    Article  Google Scholar 

  20. Sleight, A.W.; Ward, R.: Compounds of post-transition elements with the ordered perovskite structure. Inorg. Chem. 3(2), 292 (1964). https://doi.org/10.1021/ic50012a042

    Article  Google Scholar 

  21. Volonakis, G.; Sakai, N.; Snaith, H.J.; Giustino, F.: Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. J. Phys. Chem. Lett. 10(8), 1722–1728 (2019). https://doi.org/10.1021/acs.jpclett.9b00193

    Article  Google Scholar 

  22. Khan, M.S.; Khan, G.: A combined density functional (PBE, WC and Tb-mBJ) study about the optoelectronic properties of copper-rich ternary chalcogenide materials. Optik 221(June), 165292 (2020). https://doi.org/10.1016/j.ijleo.2020.165292

    Article  Google Scholar 

  23. Blaha, P.: WIEN2k, vol. 1 (2021)

  24. Borlido, P.; Schmidt, J.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S.: Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Comput. Mater. 6, 1–17 (2020). https://doi.org/10.1038/s41524-020-00360-0

    Article  Google Scholar 

  25. Perdew, J.P.: Density functional theory and the band gap problem. Int. J. Quantum Chem. 28(S19), 497–523 (1985). https://doi.org/10.1002/QUA.560280846

    Article  Google Scholar 

  26. Madsen, G.K.H.; Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  MATH  Google Scholar 

  27. Dimitrovska, S.; Aleksovska, S.; Kuzmanovski, I.: Prediction of the unit cell edge length of cubic A22 + BB′O6 perovskites by multiple linear regression and artificial neural networks. Cent. Eur. J. Chem. 3(1), 198–215 (2005). https://doi.org/10.2478/BF02476250

    Article  Google Scholar 

  28. Sato, T.; Takagi, S.; Deledda, S.; Hauback, B.C.; Orimo, S.I.: Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep23592

    Article  Google Scholar 

  29. Tyuterev, V.; Vast, N.: Murnaghan’s equation of state for the electronic ground state energy. Comput. Mater. Sci. 38, 350–353 (2006). https://doi.org/10.1016/j.commatsci.2005.08.012

    Article  Google Scholar 

  30. Khandy, S.A.; Yousuf, S.; Gupta, D.C.: Structural, magneto-electronic, mechanical, and thermophysical properties of double perovskite Ba2ZnReO6. Phys. Status Solidi (b) 256(10), 1800625 (2019). https://doi.org/10.1002/pssb.201800625

    Article  Google Scholar 

  31. O’Sullivan, S.E., et al.: Crystal and electronic structures of A2NaIO6 periodate double perovskites (A = Sr, Ca, Ba): candidate wasteforms for I-129 immobilization. Inorg. Chem. 59(24), 18407–18419 (2020). https://doi.org/10.1021/ACS.INORGCHEM.0C03044

    Article  Google Scholar 

  32. Aziz, A., et al.: Theoretical investigation of X2NaIO6 (X = Pb, Sr) double perovskites for thermoelectric and optoelectronic applications. Physica B 630, 413694 (2022). https://doi.org/10.1016/J.PHYSB.2022.413694

    Article  Google Scholar 

  33. Yang, L., et al.: Oxide perovskite Ba2AgIO6 wafers for X-ray detection. Front. Optoelectron. 14, 473–481 (2021). https://doi.org/10.1007/S12200-021-1236-Y

    Article  Google Scholar 

  34. Al-Qaisi, S., et al.: First-principles investigations of Ba2NaIO6 double perovskite semiconductor: material for low-cost energy technologies. Mater. Chem. Phys. 275, 125237 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2021.125237

    Article  Google Scholar 

  35. Perdew, J.P., et al.: Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation (Physical Review B (1993) 48, 7, (4978)). Phys. Rev. B 48(7), 4978 (1993). https://doi.org/10.1103/PhysRevB.48.4978.2

    Article  Google Scholar 

  36. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  MATH  Google Scholar 

  37. Sólyom, J.: Optical properties of solids. In: Sólyom, J. (Ed.) Fundamentals of the physics of solids, pp. 411–447. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-85316-9_10

    Chapter  Google Scholar 

  38. Ahmad Dar, S.; Sharma, R.; Srivastava, V.; Kumar Sakalle, U.: Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Adv. 9, 9522–9532 (2019). https://doi.org/10.1039/c9ra00313d

    Article  Google Scholar 

  39. Chimata, R.: Optical properties of materials calculated from first principles theory. Accessed 18 Feb 2022. Available http://www.teknat.uu.se/student (2010)

  40. Khandy, S.A.: Systematic understanding of f-electron-based semiconducting actinide perovskites Ba2MgMO6 (M = U, Np) from DFT ab initio calculations. Int. J. Energy Res. 44(September 2019), 1–16 (2020). https://doi.org/10.1002/er.5137

    Article  Google Scholar 

  41. Morss, L.R.; Fuger, J.; Jenkins, H.D.B.: Thermodynamics of actinide perovskite-type oxides I. Enthalpy of formation of Ba2MgUO6 and Ba2MgNpO6. J. Chem. Thermodyn. 14(4), 377–384 (1982). https://doi.org/10.1016/0021-9614(82)90057-X

    Article  Google Scholar 

  42. Pogue, E.A.; Bond, J.; Imperato, C.; Abraham, J.B.S.; Drichko, N.; McQueen, T.M.: A gold(I) oxide double perovskite: Ba2AuIO6. J. Am. Chem. Soc. 143(45), 19033–19042 (2021). https://doi.org/10.1021/JACS.1C08241/SUPPL_FILE/JA1C08241_SI_001.PDF

    Article  Google Scholar 

  43. Yaseen, M., et al.: Phase transition and thermoelectric properties of cubic KNbO3 under pressure: DFT approach. J. Market. Res. 11, 2106–2113 (2021). https://doi.org/10.1016/j.jmrt.2021.02.017

    Article  Google Scholar 

  44. Geballe, T.H.; Hull, G.W.: Seebeck effect in silicon. Phys. Rev. 98(4), 940 (1955). https://doi.org/10.1103/PhysRev.98.940

    Article  Google Scholar 

  45. Yaseen, M., et al.: Investigation of optical and thermoelectric properties of PbTiO3 under pressure. Physica B 615, 412857 (2021). https://doi.org/10.1016/J.PHYSB.2021.412857

    Article  Google Scholar 

  46. Aldaghfag, S.A., et al.: Investigation of electronic, optical and thermoelectric features of X2ScAgCl6 (X = K, Na) double perovskites for renewable energy applications. J. Solid State Chem. 312, 123179 (2022). https://doi.org/10.1016/j.jssc.2022.123179

    Article  Google Scholar 

  47. Nasarullah, M., et al.: Physical characteristics of X2NaMoBr6 (X= K, Rb): a DFT study. Mater. Sci. Semicond. Process. 147, 106760 (2022). https://doi.org/10.1016/j.mssp.2022.106760

    Article  Google Scholar 

  48. Mubashir, S., et al.: Pressure induced electronic, optical and thermoelectric properties of cubic BaZrO3: a first principle calculations. Optik 239, 166694 (2021). https://doi.org/10.1016/J.IJLEO.2021.166694

    Article  Google Scholar 

Download references

Acknowledgements

The author (M. Yaseen) is thankful to Higher education commission (HEC) of Pakistan for funding through project No: 6410/Punjab/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yaseen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazim, M.Z., Yaseen, M., Ghaffar, A. et al. Physical Properties of Ba2XIO6 (X = Ag, Na) Double Perovskite Oxides for Energy Harvesting Devices. Arab J Sci Eng 48, 779–787 (2023). https://doi.org/10.1007/s13369-022-06985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06985-1

Keywords

Navigation