Log in

Feasibility of Increasing Water Recovery of Inland Reverse Osmosis Systems and the Use of Reject Brine

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Desalination technologies have been emerged to supply water from unconventional water sources, and reverse osmosis systems account for a large share of desalination facilities. The quality and quantity of reject brine from desalination processes depend on the characteristics of feed water, recovery rate, type, and capacity of desalination technology. This study has been done to mitigate the environmental impacts of reject brine disposal in inland areas by investigating the two approaches of using reject brine as sources of water supply or reducing its final volume. First, the reject brine’s quality data from ten inland water desalination plants using reverse osmosis system were collected. Then, the potential use of reject brine in activities including agriculture, aquaculture, industry, livestock, poultry, and turfgrass was evaluated. It was concluded that the quality of reject brine in some plants is suitably enough to be used directly in the mentioned uses. Finally, by the use of CSMPRO4 and ROSA9 software, the quality of reject brine was analysed and different methods for the reject brine management were investigated. The results showed that recovering water from reject brine with the help of appropriate pre-treatment options and use of chemicals is possible up to 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Raw data were generated from Water and Wastewater Company.

References

  1. Zdanowski, J.: Middle Eastern Societies in the 20th Century. Cambridge Scholars Publishing, Newcastle (2014)

    Google Scholar 

  2. Gorjian, S.; Ghobadian, B.: Solar desalination: a sustainable solution to water crisis in Iran. Renew Sustain Energy Rev. 48, 571–584 (2015). https://doi.org/10.1016/j.rser.2015.04.009

    Article  Google Scholar 

  3. Gude, V.G.: Desalination and sustainability—an appraisal and current perspective. Water res. 89, 87–106 (2016). https://doi.org/10.1016/j.watres.2015.11.012

    Article  Google Scholar 

  4. TasnimNews: Fresh water production capacity in the country increased by 50% (2020) https://www.tasnimnews.com/fa/news/1399/08/15/2383495/. Accessed 21 Nov 2020

  5. Cambridge, M.L.; Zavala-Perez, A.; Cawthray, G.R.; Mondon, J.; Kendrick, G.A.: Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. Mar Pollut Bull. 115, 252–260 (2017). https://doi.org/10.1016/j.marpolbul.2016.11.066

    Article  Google Scholar 

  6. Missimer, T.M.; Maliva, R.G.: Environmental issues in seawater reverse osmosis desalination: intakes and outfalls. Desalination 434, 198–215 (2018). https://doi.org/10.1016/j.desal.2017.07.012

    Article  Google Scholar 

  7. Chung, H.W.; Nayar, K.G.; Swaminathan, J.; Chehayeb, K.M.: Thermodynamic analysis of brine management methods: zero-discharge desalination and salinity-gradient power production. Desalination 404, 291–303 (2017). https://doi.org/10.1016/j.desal.2016.11.022

    Article  Google Scholar 

  8. Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F.J.: Comparative study of brine management technologies for desalination plants. Desalination 336, 32–49 (2014). https://doi.org/10.1016/j.desal.2013.12.038

    Article  Google Scholar 

  9. Shah Abedi, M.; Hashemi, S.H.; Gugol, M.: Critical review of reverse osmosis and pretreatment techniques of inland desalination plants. J. Water Sustain Dev. 5, 25–36 (2019). https://doi.org/10.22067/jwsd.v5i2.68853

    Article  Google Scholar 

  10. Jamaly, S.; Darwish, N.N.; Ahmed, I.; Hasan, S.W.: A short review on reverse osmosis pretreatment technologies. Desalination 354, 30–38 (2014). https://doi.org/10.1016/j.desal.2014.09.017

    Article  Google Scholar 

  11. Azadi Aghdam, M.; Zraick, F.; Simon, J.; Farrell, J.; Snyder, S.A.: A novel brine precipitation process for higher water recovery. Desalination 385, 69–74 (2016). https://doi.org/10.1016/j.desal.2016.02.007

    Article  Google Scholar 

  12. El-Naas, M.H.; Al-Marzouqi, A.H.; Chaalal, O.: A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251(1–3), 70–74 (2010)

    Article  Google Scholar 

  13. Arnal, J.M.; Sancho, M.; Iborra, I.; Gozálvez, J.M.; Santafé, A.; Lora, J.: Concentration of brines from RO desalination plants by natural evaporation. Desalination 182, 435–439 (2005). https://doi.org/10.1016/j.desal.2005.02.036

    Article  Google Scholar 

  14. Duan, Z.; Hu, W.: The accumulation of potash in a continental basin: the example of the Qarhan Saline Lake, Qaidam Basin, West China. Eur. J. Miner. 13, 1223–1233 (2001). https://doi.org/10.1127/0935-1221/2001/0013-1223

    Article  Google Scholar 

  15. Vovnyuk, S.V.; Czapowski, G.: Generation of primary sylvite: the fluid inclusion data from the Upper Permian (Zechstein) evaporates, SW Poland. Geol. Soc. Spec. Publ. 285, 275–284 (2007). https://doi.org/10.1144/sp285.16

    Article  Google Scholar 

  16. Alcalá, F.J.; Custodio, E.: Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Hydrology. 359, 189–207 (2008). https://doi.org/10.1016/j.jhydrol.2008.06.028

    Article  Google Scholar 

  17. Pérez-González, A.; Urtiaga, A.M.; Ibáñez, R.; Ortiz, I.: State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 46, 267–283 (2012). https://doi.org/10.1016/j.watres.2011.10.046

    Article  Google Scholar 

  18. Xu, P.; Cath, T.Y.; Robertson, A.P.; Reinhard, M.; Leckie, J.O.; Drewes, J.E.: Critical review of desalination concentrate management, treatment and beneficial use. Environ. Eng. Sci. 30(8), 502–514 (2013). https://doi.org/10.1089/ees.2012.0348

    Article  Google Scholar 

  19. Gabelich, C.J.; Williams, M.D.; Rahardianto, A.; Franklin, J.C.; Cohen, Y.: High-recovery reverse osmosis desalination using intermediate chemical demineralization. J. Memb. Sci. 301, 131–141 (2007). https://doi.org/10.1016/j.memsci.2007.06.007

    Article  Google Scholar 

  20. DWAF-Department of Water Affairs and Forestry: Agricultural use: Irrigation, South African water quality guidelines. The Republic of South Africa (1996)

  21. Kizer, M.A.; Zhang, H.: Understanding Your Irrigation Water Test Report. Division of Agricultural Sciences and Natural Resources Oklahoma State University (2001)

    Google Scholar 

  22. Phocaides, A.: Handbook on Pressurized Irrigation Techniques. Food & Agriculture Organization (FAO), Rome (2007)

    Google Scholar 

  23. Carrow, R.; Duncan, R.R.; Huck, M.T.: Turfgrass and Landscape Irrigation Water Quality: Assessment and Management. CRC Press (2008)

    Book  Google Scholar 

  24. Flynn, R.: Irrigation Water Analysis and Interpretation, Guide W-102. NM State University: Cooperative Extension Service (2009)

    Google Scholar 

  25. President Deputy Strategic Planning and Control Environmental Criteria of Treated Waste Water and Return Flow Reuse. Planning and Budget Organization, Tehran (2010)

  26. President Deputy Strategic Planning and Control Guidelines for Quality Classification of Raw Water Effluent, and Reused Water for Industrial and Recreational Use. Planning and Budget Organization, Tehran (2009)

  27. Le, T.H.; Hoa, N.V.; Sorgeloos, P.; Van Stappen, G.: Artemia feeds: a review of brine shrimp production in the Mekong delta, Vietnam. Rev. Aquac. 11(4), 1169–1175 (2019). https://doi.org/10.1111/raq.12285

    Article  Google Scholar 

  28. Gajardo, G.M.; Beardmore, J.A.: The brine shrimp Artemia: adapted to critical life conditions. Front. Physiol. 3, 185 (2012). https://doi.org/10.3389/fphys.2012.00185

    Article  Google Scholar 

  29. Da Silva Dias, N.; De Souza, F.I.; Porto, V.C.N.; De Sousa Neto, O.N.; Portela, J.C.; Souza, A.C.M.; Da Silva, C.R.; De Sousa Junior, F.S.: Agricultural potential of reject brine from water desalination. Afr. J. Agric. Res. 10, 4713–4717 (2015). https://doi.org/10.5897/AJAR2015.10362

    Article  Google Scholar 

  30. Moura, E.S.R.D.; Cosme, C.R.; Dias, N.D.S.; Portela, J.C.; Souza, A.C.M.: Yield and forage quality of saltbush irrigated with reject brine from desalination plant by reverse osmosis. Rev. Caatinga 29, 01–10 (2016). https://doi.org/10.1590/1983-21252016v29n101rc

    Article  Google Scholar 

  31. Sánchez, A.S.; Nogueira, I.B.R.; Kalid, R.A.: Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination 364, 96–107 (2015). https://doi.org/10.1016/j.desal.2015.01.034

    Article  Google Scholar 

  32. Heijman, S.G.J.; Guo, H.; Li, S.; Van Dijk, J.C.; Wessels, L.P.: Zero liquid discharge: heading for 99% recovery in nanofiltration and reverse osmosis. Desalination (2009). https://doi.org/10.1016/j.desal.2007.10.087

    Article  Google Scholar 

  33. Yaqub, M.; Lee, W.: Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review. Sci. Total Environ. 681, 551–563 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.062

    Article  Google Scholar 

  34. Panagopoulos, A.; Haralambous, K.J.: Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery–Analysis, challenges and prospects. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.104418

    Article  Google Scholar 

  35. Alnouri, S.Y.; Linke, P.; El-Halwagi, M.M.: Accounting for central and distributed zero liquid discharge options in interplant water network design. J. Clean. Prod. 171, 644–661 (2018). https://doi.org/10.1016/j.jclepro.2017.09.236

    Article  Google Scholar 

  36. Cui, P.; Qian, Y.; Yang, S.: New water treatment index system toward zero liquid discharge for sustainable coal chemical processes. ACS Sustain. Chem. Eng. 6(1), 1370–1378 (2018). https://doi.org/10.1021/acssuschemeng.7b03737

    Article  Google Scholar 

  37. Tong, T.; Elimelech, M.: The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. J. Environ. Sci. Technol. 50(13), 6846–6855 (2016). https://doi.org/10.1021/acs.est.6b01000

    Article  Google Scholar 

  38. Cipolletta, G.; Lancioni, N.; Akyol, Ç.; Eusebi, A.L.; Fatone, F.: Brine treatment technologies towards minimum/zero liquid discharge and resource recovery. State of the art and techno-economic assessment. J. Environ. Manag. 300, 113681 (2021). https://doi.org/10.1016/j.jenvman.2021.113681

    Article  Google Scholar 

  39. Ahmed, M.; Kumar, R.; Al-Wazzan, Y.; Garudachari, B.; Thomas, J.P.: Assessment of performance of inorganic draw solutions tested in forward osmosis process for desalinating Arabian gulf seawater. Arab. J. Sci. Eng. 43(11), 6171–6180 (2018). https://doi.org/10.1007/s13369-018-3394-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Water and Wastewater Company in collecting data.

Funding

This research was funded by Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Hashemi.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah Abedi, M., Hashemi, S.H. & Fazeli, M. Feasibility of Increasing Water Recovery of Inland Reverse Osmosis Systems and the Use of Reject Brine. Arab J Sci Eng 47, 6525–6534 (2022). https://doi.org/10.1007/s13369-021-06451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06451-4

Keywords

Navigation