Log in

A Comparative Analysis of Nanofluid and Hybrid Nanofluid Flow Through Endoscope

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is used to discuss a comparative study of AA7072 (nanofluid) and AA7072/AA7075 (hybrid nanofluid) flow through endoscope. For this evaluation, AA7072 (which is the combination of Al \((98\%) \) and Zn \((1\%)\) mixed with metals Si, Fe and Cu) and AA7075 (which is the mixture of Al \((90\%)\), Zn \((6\%)\), Mg \((3\%)\) and Cu \((1\%)\) mixed with metals Si, Fe and Mg) are considered as nanoparticles and water as a base fluid. The inner cylinder is endoscope (rigid and fixed) moving with constant velocity \(\textit{(V)}\), while the external cylinder is sinusoidal (wave moving down to its boundaries) like the shape of artery in the form of concentration and relaxation phenomena. Low Reynolds number and long wavelength estimation is applied for analytic solution. The resulting nonlinear PDEs are transformed into ODEs by perturbation technique. After this, we compare graphically the behavior of nanofluid and hybrid nanofluids for velocity profile, temperature profile, friction forces on inner and outer cylinders, pressure gradient and pressure rise for different values of solid volume fractions and inner cylinder radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Developments and applications of Non-Newtonian flows. ASME 66, 99–105 (1995)

    Google Scholar 

  2. Sourtiji, E.; Hosseinizadeh, S.F.; Gorji-Bandpy, M.; Ganji, D.D.: Effect of water-based \(\text{ Al}_{2}\text{ O}_{3}\) nanofluids on heat transfer and pressure drop in periodic mixed convection inside a square ventilated cavity. Int. Commun. Heat Mass Transf. 38, 1125–1134 (2011)

    Article  Google Scholar 

  3. Fereidoon, A.; Saedodin, S.; Esfe, M.H.; Noroozi, M.J.: evaluation of mixed convection in inclined square liddriven cavity filled with \(\text{ Al}_{2}\text{ O}_{3}\)/water nano-fluid. Eng. Appl. Comput. Fluid Mech. 7, 55–65 (2013)

    Google Scholar 

  4. Sundar, L.S.; Farooky, M.H.; Sarada, S.N.; Singh, M.K.: Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of \(\text{ Al}_{2}\text{ O}_{3}\) and CuO nanofluid. Int. Commun. Heat Mass Transf. 41, 41–46 (2013)

    Article  Google Scholar 

  5. Salari, M.; Mohammadtabar, M.; Mohammadtabar, A.: Numerical solutions to heat transfer of nanofluid flow over stretching sheet subjected to variations of nanoparticle volume fraction and wall temperature. Appl. Math. Mech. 35, 63–72 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brahimn, T.; Jemni, A.: Numerical case study of packed sphere wicked heat pipe using \(\text{ Al}_{2}\text{ O}_{3}\) and CuO based water nano fluid. Case Stud. Therm. Eng. 8, 311–321 (2016)

    Article  Google Scholar 

  7. Noghrehabadi, A.; Salamat, P.; Ghalambaz, M.: Integral treatment for forced convection heat and mass transfer of nanofluids over linear stretching sheet. Appl. Math. Mech. (Engl. Ed.) (2015). https://doi.org/10.1007/s10483-015-1919-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahmadi, A.R.; Zahmatkesh, A.; Hatami, M.; Ganji, D.D.: A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technol. 258, 125–133 (2014)

    Article  Google Scholar 

  9. Haroun, N.A.; Sibanda, P.; Mondal, S.; Motsa, S.S.; Rashidi, M.M.: Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method. Bound. Value Probl. (2015). https://doi.org/10.1186/s13661-015-0424-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Ali, M.M.; Alim, M.A.; Akhter, R.; Ahmed, S.S.: MHD natural convection flow of CuO/water nanofluid in a differentially heated hexagonal enclosure with a tilted square block. Int. J. Appl. Comput. Math. (2017). https://doi.org/10.1007/s40819-017-0400-y

    Article  MathSciNet  Google Scholar 

  11. Atif, S.M.; Hussain, S.; Sagheer, M.: Heat and mass transfer analysis of time-dependent tangent hyperbolic nanofluid flow past a wedge. Phys. Lett. A 383, 1187–1198 (2019)

    Article  MathSciNet  Google Scholar 

  12. Saha, G.; Paul, M.C.: Transition of nanofluids flow in an inclined heated pipe. Int. Commun. Heat Mass Transf. 82, 49–62 (2017)

    Article  Google Scholar 

  13. Bashirnezhad, K.; Ghavami, M.; Alrashed, A.A.A.A.: Experimental investigations of nanofluids convective heat transfer in different flow regimes: a review. J. Mol. Liq. 244, 309–321 (2017)

    Article  Google Scholar 

  14. Mehrez, Z.; Cafsi, A.E.: Thermodynamic analysis of \(\text{ Al}_2\text{ O}_3\)-water nanofluid flow in an open cavity under pulsating inlet condition. Int. J. Appl. Comput. Math. 3, 489–510 (2017)

    Article  MathSciNet  Google Scholar 

  15. Minea, A.A.; Estelle, P.: Numerical study on CNT nanofluids behavior in laminar pipe flow. J. Mol. Liq. 271, 281–289 (2018)

    Article  Google Scholar 

  16. Nadooshan, A.A.; Eshgarf, H.; Afrand, M.: Evaluating the effects of different parameters on rheological behavior of nanofluids: a comprehensive review. Powder Technol. 338, 342–353 (2018)

    Article  Google Scholar 

  17. Bezaatpour, M.; Goharkhah, M.: Three dimensional simulation of hydrodynamic and heat transfer behavior of magnetite nanofluid flow in circular and rectangular channel heat sinks filled with porous media. Powder Technol. 344, 68–78 (2019)

    Article  Google Scholar 

  18. Talebizadehsardar, P.; Shahsavar, A.; Toghraie, D.; Barnoon, P.: An experimental investigation for study the rheological behavior of water-carbon nanotube/magnetite nanofluid subjected to a magnetic field. Physica A 534, 122129 (2019)

    Article  Google Scholar 

  19. Umavathi, J.C.; Hemavathi, K.: Flow and heat transfer of composite porous medium saturated with nanofluid. Propuls. Power Res. 8, 173–181 (2019)

    Article  Google Scholar 

  20. Li, Z.; Shahsavar, A.; Niazi, K.; Rashed, A.A.A.A.A.; Rostami, S.: Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger. Int. Commun. Heat Mass Transf. 115, 104628 (2020)

    Article  Google Scholar 

  21. Guo, W.; Li, G.; Zheng, Y.; Dong, C.: The effect of flow pulsation on \(\text{ Al}_2\text{ O}_3\) nanofluids heat transfer behavior in a helical coil: a numerical analysis. Chem. Eng. Res. Des. 156, 76–85 (2020)

    Article  Google Scholar 

  22. Aly, E.H.; Pop, I.: MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid. Powder Technol. 367, 192–205 (2020)

    Article  Google Scholar 

  23. Tlili, I.; Nabwey, H.A.; Ashwinkumar, G.P.; Sandeep, N.: 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-61215-8

    Article  Google Scholar 

  24. Mekheimer, K.S.; Elmaboudc, Y.A.; Abdellateef, A.I.: Peristaltic transport through eccentric cylinders: mathematical model. Appl. Bion. Biomech. 10, 19–27 (2013)

    Article  Google Scholar 

  25. Lund, L.A.; Omar, Z.; Dero, S.; Khan, I.; Baleanu, D.; Nisar, K.S.: Magnetized flow of \(\text{ Cu } + \text{ Al}_{2}\text{ O}_{3} + \text{ H}_{2}\text{ O }\) hybrid nanofluid in porous medium: analysis of duality and stability. Symmetry 12(9), 1513 (2020). https://doi.org/10.3390/sym12091513

    Article  Google Scholar 

  26. Lund, L.A.; Omar, Z.; Khan, I.; Baleanu, D.; Nisar, K.S.: Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-72266-2

    Article  Google Scholar 

  27. Nisar, K.S.; Khan, U.; Zaib, A.; Khan, I.; Baleanu, D.: Numerical simulation of mixed convection squeezing flow of a hybrid nanofluid containing magnetized ferroparticles in 50\(\%\):50\(\%\) of ethylene glycol-water mixture base fluids between two disks with the presence of a non-linear thermal radiation heat flux. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00792

    Article  Google Scholar 

  28. Sheikh, N.A.; Ching, D.L.C.; Khan, I.; Kumar, D.; Nisar, K.S.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J.

  29. Khan, Z.A.; Haq, S.U.; Khan, T.S.; Khan, I.; Nisar, K.S.: Fractional Brinkman type fluid in channel under the effect of MHD with Caputo-Fabrizio fractional derivative. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.01.056

    Article  Google Scholar 

  30. Tassaddiq, A.; Khan, I.; Nisar, K.S.; Singh, J.: MHD flow of a generalized Casson fluid with Newtonian heating: a fractional model with Mittag-Leffler memory. Alex. Eng. J. 59, 3049–3059 (2020)

    Article  Google Scholar 

  31. Lund, L.A.; Omar, Z.; Dero, S.; Baleanu, D.; Khan, I.: Rotating 3D flow of hybrid nanofluid on exponentially shrinking sheet: symmetrical solution and duality. Symmetry 12, 1637 (2020)

    Article  Google Scholar 

  32. Anwar, T.; Kumam, P.; Khan, A.; Asifa, I.; Thounthong, P.: Generalized unsteady MHD Natural convective flow of Jeffery model with ramped wall velocity and Newtonian heating; A Caputo-Fabrizio Approach. Chin. J. Phys. 68, 849–865 (2020)

  33. Khan, M.; Salahuddin, T.; Malik, M.Y.; Tanveer, A.; Hussain, A.; Alqahtani, A.S.: 3-D axisymmetric Carreau nanofluid flow near the Homann stagnation region along with chemical reaction: Application Fourier’s and Fick’s laws. Math. Comput. Simul. 170, 221–235 (2020)

  34. Khan, M.; Salahuddin, T.; Malik, M.Y.; Alqarni, M.S.; Alqahtani, A.M.: Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution. Phys. A Stat. Mech. Appl. 124231 (2020)

  35. Khan, M.; Shahid, A.; Shafey, M.E.L.; Salahuddin, T.; Khan, F.: Predicting entropy generation in flow of non-Newtonian flow due to a stretching sheet with chemically reactive species. Comput. Methods Programs Biomed. 187, 105246 (2020)

    Article  Google Scholar 

  36. Tanveer, A.; Salahuddin, T.; Khan, M.; Malik, M.Y.; Alqarni, M.S.: Theoretical analysis of non-Newtonian blood flow in a microchannel. Comput. Methods Programs Biomed. 191, 105280 (2020)

    Article  Google Scholar 

  37. Khan, M.; El Shafey, A.M.; Salahuddin, T.; Khan, F.: Chemically Homann stagnation point flow of Carreau fluid. Phys. A Stat. Mech. Appl. 124066 (2020)

  38. Khan, M.; Salahuddin, T.; Elmasry, Y.; Aly, S.; Khan, F.: Zero mass flux and convection boundary condition effects on Carreau-Yasuda fluid flow over a heated plat. Radiat. Phys. Chem. 177, 109152 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, T., Bashir, A.M., Khan, M. et al. A Comparative Analysis of Nanofluid and Hybrid Nanofluid Flow Through Endoscope. Arab J Sci Eng 47, 1033–1042 (2022). https://doi.org/10.1007/s13369-021-05968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05968-y

Keywords

Navigation