Log in

Joint Estimation of Target's Range and Angle Based on Time-Invariant Spot Beam Optimization

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The application of frequency diverse array and multiple-input multiple-output (FDA-MIMO) radar to achieve the joint estimation of target's range and angle is receiving more and more attention. However, its performance is generally affected by the periodicity and time-varying of its beam pattern. Therefore, this paper implements a joint estimation algorithm of target's range and angle based on a new waveform synthesis model of time modulation and range compensation FDA-MIMO (TMRC-FDA-MIMO) radar. At the same time, the multiple signal classification (MUSIC) algorithm is mainly used in FDA-MIMO radar. The huge amount of calculation also brings difficulties to the implementation of the system. Therefore, this paper proposes an improved estimating signal parameters via rotation invariance technique algorithm to solve the problem of large amount of calculation on the basis of ensuring system performance. In addition, the closed form expressions of the Cramér–Rao lower bound and root-mean-squared error of range and angle estimation are derived. Theoretical analysis and simulation verify the effectiveness of the proposed method and demonstrate the excellent performance of the proposed radar system and algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ivashina, M.V.; Iupikov, O.; Maaskant, R., et al.: An optimal beamforming strategy for wide-field surveys with phased-array-fed reflector Antennas[J]. IEEE Trans. Antennas Propag. 59(6), 1864–1875 (2011)

    Article  Google Scholar 

  2. Ding, X.; Cheng, Y.F.; Shao, W., et al.: A wide-angle scanning planar phased array with pattern reconfigurable magnetic current Element[J]. IEEE Trans. Antennas Propag. 65(99), 1–1 (2018)

    MathSciNet  Google Scholar 

  3. Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J.: Frequency diverse array radars. In: IEEE Radar Conference, Verona, NY, April 2006, pp. 215–217 (2016)

  4. Nguyen, Q.; Park, M.; Kim, Y.; Bien, F.: 77 GHz waveform generator with multiple frequency shift keying modulation for multi-target detection automotive radar applications. Electron. Lett. 51(8), 595–596 (2015)

    Article  Google Scholar 

  5. Secmen, M.; Demir, S.; Hizal, A.; Eker, T.: Frequency diverse array antenna with periodic time modulated pattern in range and angle. In: IEEE Radar Conference, Waltham, MA, USA, April 2007, pp. 427–430 (2017)

  6. Huang, J.; Tong, K.F.; Baker, C.: Frequency diverse array with beam scanning feature. In: IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, pp. 1–4 (2008)

  7. Baizert, P.; Hale, T.; Temple, M.; Wicks, M.: Forward-looking radar GMTI bene fits using a linear frequency diverse array. Electron. Lett. 42(22), 1311–1312 (2006)

    Article  Google Scholar 

  8. Wen, F.-Q.; Zhang, G.: Multi-way compressive sensing based 2d doa estimation algorithm for monostatic mimo radar with arbitrary arrays. Wireless Pers. Commun. 85(4), 2393–2406 (2015)

    Article  Google Scholar 

  9. Bobo, F.; Hanying, H.: A two-dimensional DOA estimation algorithm based on propagator for monostatic MIMO radar. In: International Conference on Wireless Communications. IET (2016)

  10. He, J.; Swamy, M.N.; Ahmad, M.O.: Joint DOD and DOA estimation for MIMO array with velocity receive sensors. IEEE Signal Process. Lett. 18, 399–402 (2011)

    Article  Google Scholar 

  11. Dong, Z.; Yongshun, Z.; Guimei, Z.; Cunqian, F.; Jun, T.: Esprit-like two-dimensional doa estimation for monostatic mimo radar with electromagnetic vector received sensors under the condition of gain and phase uncertainties and mutual coupling. Sensors 17(11), 2457 (2017)

    Article  Google Scholar 

  12. Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C.: Joint range and angle estimation using mimo radar with frequency diverse array. Signal Process. IEEE Trans. 63(13), 3396–3410 (2015)

    Article  MathSciNet  Google Scholar 

  13. Khan, W.; Qureshi, I.M.; Basit, A., et al.: MIMO-Frequency diverse array radar with unequal subarrays for improved range-angle dependent beamforming. Wireless Pers. Commun. 97, 1967–1984 (2017). https://doi.org/10.1007/s11277-017-4590-8

    Article  Google Scholar 

  14. Gao, K.; Shao, H.; Chen, H.; Cai, J.; Wang, W.Q.: Impact of frequency increment errors on frequency diverse array mimo in adaptive beamforming and target localization. Digital Signal Process. 44, 58–67 (2015)

    Article  Google Scholar 

  15. Fartookzadeh, M.; Armaki, S.H.M.: Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continuous waveform. IEEE Antennas Wirel. Propag. Lett. 17(2), 263–266 (2018)

    Article  Google Scholar 

  16. Yan, Y.; Cai, J.; Wang, W.Q.: Two-stage esprit for unambiguous angle and range estimation in fda-mimo radar. Digital Signal Process. 92, 151 (2019)

    Article  Google Scholar 

  17. Yao, A.M.; Wu, W.; Fang, D.G.: Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Trans. Antennas Propag. 64(10), 4434–4446 (2016)

    Article  MathSciNet  Google Scholar 

  18. Guo, R.; Ni, Y.; Liu, H.; Wang, F.; He, L.: Signal diverse array radar for electronic warfare. IEEE Antennas Wirel. Propag. Lett. 16, 2906–2910 (2017)

    Article  Google Scholar 

  19. Chu, W.; Liu, Y.; Li, X., et al.: Optimization of emission waveform by accelerated particle swarm algorithm based on logarithmic frequency offset mathematical model. Wireless Pers. Commun. 113, 167–187 (2020)

    Article  Google Scholar 

  20. **ong, J.; Wang, W.Q.; Gao, K.: FDA-MIMO Radar Range-Angle Estimation: CRLB, MSE and Resolution Analysis[J]. IEEE Trans. Aerospace Electr. Syst. 54, 284–294 (2018)

    Article  Google Scholar 

  21. Wang, W.-Q.: Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Trans. Antennas Propag. 61(8), 4073–4081 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rao, B.D.; Hari, K.: Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1990–1995 (1989)

    Article  Google Scholar 

  23. Brillinger, D.R.: Time Series: Data Analysis and Theory, Expanded edn. Holden-Day (1976)

  24. Stoica, P.; Nehorai, A.: MUSIC, maximum likelihood and Cramér-Rao bound. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, New York, NY, pp. 2296–2299 (1988)

  25. Gui, R.H.; Wang, W.-Q.; Cui, C.; So, H.C.: Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Trans. Signal Process. 66(1), 200–214 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Department of Jilin Province [Grant number20190303034SF].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, W., Liu, Y., Li, X. et al. Joint Estimation of Target's Range and Angle Based on Time-Invariant Spot Beam Optimization. Arab J Sci Eng 47, 3023–3035 (2022). https://doi.org/10.1007/s13369-021-05821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05821-2

Keywords

Navigation