Log in

Co-evolutionary Multi-Colony Ant Colony Optimization Based on Adaptive Guidance Mechanism and Its Application

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ant colony optimization has insufficient convergence and tends to fall into the local optima when solving the traveling salesman problem. This paper proposes a co-evolutionary multi-colony ant colony optimization (MCGACO) to overcome this deficiency and applies it to the Robot Path Planning. First, a dynamic grou** cooperation algorithm, combined with Ant Colony System and Max-Min Ant System, is introduced to form a heterogeneous multi-population structure. Each population co-evolves and complements each other to improve the overall optimization performance. Second, an adaptive guidance mechanism is proposed to accelerate convergence speed. The mechanism includes two parts: One is a dynamic evaluation network, which is used to evaluate and divide all solutions by the evaluation function. The other is a positive-negative incentive strategy, which can enhance the guiding role of solutions with higher evaluation value. Besides, to jump out of the local optima, an inter-specific co-evolution mechanism based on the game model is proposed. By dynamically determining the optimal communication combination, the diversity among populations can be well balanced. Finally, the experimental results demonstrate that MCGACO outperforms in terms of solution accuracy and convergence. Meanwhile, the proposed algorithm is also feasible for application in Robot Path Planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Strk, L.; Skinderowicz, R.; Boryczka, U.: Adjustability of a discrete particle swarm optimization for the dynamic TSP. Soft Comput. 22(22), 7633–7648 (2018)

    Article  Google Scholar 

  2. Das, P.K.; Jena, P.K.: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators. Appl. Soft Comput. 92, 106312 (2020)

    Article  Google Scholar 

  3. Wang, Z.; Fang, X.; Li, H.; **, H.: An improved Partheno-genetic algorithm with reproduction mechanism for the multiple traveling salesperson problem. IEEE Access 8, 102607–102615 (2020)

    Article  Google Scholar 

  4. Hao, K.; Zhao, J.; Yu, K.; Li, C.; Wang, C.: Path planning of mobile robots based on a multi-population migration genetic algorithm. Sensors 20(20), 5873 (2020)

    Article  Google Scholar 

  5. Mavrovouniotis, M.; Muller, F.M.; Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017)

    Article  Google Scholar 

  6. Chen, G.; Liu, J.: Mobile robot path planning using ant colony algorithm and improved potential field method. Comput. Intell. Neurosci. 2019812, 1–10 (2019)

    Google Scholar 

  7. Jia, Z.; Wang, Y.; Wu, C.; Yang, Y.; Zhang, X.; Chen, H.: Multi-objective energy-aware batch scheduling using ant colony optimization algorithm. Comput. Ind. Eng. 131, 41–56 (2019)

    Article  Google Scholar 

  8. Demir, H.I.; Erden, C.: Dynamic integrated process planning, scheduling and due-date assignment using ant colony optimization. Comput. Ind. Eng. 149, 106799 (2020)

    Article  Google Scholar 

  9. Huang, Y.; Blazquez, C.A.; Huang, S.; Paredes-Belmar, G.; Latorre-Nunez, G.: Solving the feeder vehicle routing problem using ant colony optimization. Comput. Ind. Eng. 127, 520–535 (2019)

    Article  Google Scholar 

  10. Yang, Y.; Yang, B.; Wang, S.; Liu, F.; Wang, Y.; Shu, X.: A dynamic ant-colony genetic algorithm for cloud service composition optimization. Int. J. Adv. Manuf. Technol. 102(1–4), 355–368 (2019)

    Article  Google Scholar 

  11. Dorigo, M.; Maniezzo, V.; Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)

    Article  Google Scholar 

  12. Dorigo, M.; Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  13. Stützle, T.; Hoos, H.H.: MAX-MIN ant system, future generation. Comput. Syst. 16, 889–914 (2000)

    Google Scholar 

  14. Yan, Y.; Sohn, H.; Reyes, G.: A modified ant system to achieve better balance between intensification and diversification for the traveling salesman problem. IEEE Access 60, 256–267 (2017)

    Google Scholar 

  15. Escario, J.B.; Jiménez, J.F.; Giron-Sierra, J.M.: Ant colony extended: experiments on the travelling salesman problem. Exp. Syst. Appl. 42(1), 390–410 (2015)

    Article  Google Scholar 

  16. Pan, H.; You, X.; Liu, S.: High-frequency path mining-based reward and punishment mechanism for multi-colony ant colony optimization. IEEE Access 8, 155459–155476 (2020)

    Article  Google Scholar 

  17. Ivan, W.M.: An improved ant colony algorithm applied in the TSP problem. Appl Mech Mater. 380–384, 2240–2243 (2012)

    Google Scholar 

  18. Neyoy, H.; Castillo, O.; Soria, J.: Dynamic fuzzy logic parameter tuning for aco and its application in tsp problems. Stud. Comput. Intell. 451(1), 259–271 (2013)

    Google Scholar 

  19. Shetty, A.; Puthusseri, K.S.; Shankaramani,R.: An improved ant colony optimization algorithm: minion ant(mant) and its application on TSP. In: IEEE Symposium Series on Computational Intelligence SSCI, pp. 1219–1225 (2018)

  20. Gao, S.; Zhong, J.; Cui, Y.; Gao, C.; Li, X.: A novel pheromone initialization strategy of ACO algorithms for solving TSP. in 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, pp. 243–248 (2017)

  21. Middendorf, M.; Reischle, F.; Schmeck, H.: Multi colony ant algorithms. J. Heuristics 8(3), 305–320 (2002)

    Article  Google Scholar 

  22. Melo, L.; Pereira, F.; Schmeck, H.: MC-ANT: a multi-colony ant algorithm, artifical evolution. in 9th International Conference, Evolution Artificielle. EA, 2009, Strasbourg, France, October 26–28, 2009. Revised Selected Papers 5975(3), 25–36 (2009)

  23. Gulcu, S.; Mahi, M.; Baykan, O.K.; Kodaz, H.: A parallel cooperative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem. Soft Comput. 22(5), 1669–1685 (2018)

    Article  Google Scholar 

  24. Tuani, A.F.; Keedwell, E.; Collett, M.: H-ACO: a heterogeneous ant colony optimisation approach with application to the travelling salesman problem. In Artificial Evolution: 13th International Conference, pp. 144–161. Évolution Artificielle, EA (2017)

  25. Chen, J.; You, X.; Liu, S.; Li, J.: Entropy-based dynamic heterogeneous ant colony optimization. IEEE Access 7, 317–328 (2019)

    Google Scholar 

  26. Zhu, H.; You, X.; Liu, S.: Multiple ant colony optimization based on pearson correlation coefficient. IEEE Access 7, 628–638 (2019)

    Google Scholar 

  27. Gunduz, M.; Kiran, M.S.; Ozceylan, E.: A hierarchic approach based on swarm intelligence to solve the traveling salesman problem. Turk. J. Electr. Eng. Comput. Sci. 23(1), 215–235 (2015)

    Google Scholar 

  28. Zhang, H.; You, X.: Multi-population ant colony optimization algorithm based on congestion factor and co-evolution mechanism. IEEE Access 7, 160–169 (2019)

    Article  Google Scholar 

  29. Zhang, D.; You, X.; Liu, S.; Yang, K.: Multi-colony ant colony optimization based on generalized jaccard similarity recommendation strategy. IEEE Access 7, 303–317 (2019)

    Google Scholar 

  30. Meng, L.; You, X.; Liu, S.; Li, S.: Multi-colony ant algorithm using both generative adversarial nets and adaptive stagnation avoidance strategy. IEEE Access 8, 250–260 (2020)

    Google Scholar 

  31. Akhand, M.A.H.; Ayon, S.I.; Shahriyar, S.A.; Siddique, N.H.; Adeli, H.: Discrete spider monkey optimization for travelling salesman problem. Appl. Soft Comput. 86, 105887 (2020)

    Article  Google Scholar 

  32. Xue, H.; Peng, Z.; Lin, Y.: A multiple ant colonies optimization algorithm based on immunity for solving tsp. Dn International Conference on Artificial Intelligence & Education (2010)

  33. Clausius, R.: Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wrmetheorie. Annalen der Physik 125, 353–400 (1865)

    Article  Google Scholar 

  34. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  35. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  36. Shi, M.; Tang, Y.; Liu, J.: Functional and contextual attention-based lstm for service recommendation in mashup creation. IEEE Trans. Parallel Distrib. Syst. 99, 1 (2018)

    Google Scholar 

  37. Sankara, R.A.; Durga, B.S.; Sobha, R.T.; Bapi, R.S.; Narahari, S.G.: Study of Diversity and Similarity of Large Chemical Databases Using Tanimoto Measure (2011)

  38. Racz, A.; Bajusz, D.; Heberger, K.: Life beyond the tanimoto coefficient: similarity measures for interaction fingerprints. J. Cheminf. 10(1), 48 (2018)

    Article  Google Scholar 

  39. Li, Z.; Li, Y.; Rong, X.; Zhang, H.: Grid map construction and terrain prediction for quadruped robot based on c-terrain path. IEEE Access 8, 572–580 (2020)

    Google Scholar 

  40. Li, J.; Li, L.: A hybrid genetic algorithm based on information entropy and game theory. IEEE Access 8, 602–611 (2020)

    Google Scholar 

  41. Wang, Y.; Hao, J.; Liu, W.; Wang, X.: Dynamic evaluation of GNSS spoofing and jamming efficacy based on game theory. IEEE Access 8, 845–857 (2020)

    Google Scholar 

  42. Luo, Q.; Wang, H.; Zheng, Y.; He, J.: Research on path planning of mobile robot based on improved ant colony algorithm. Neural Comput. Appl. 32(6), 1555–1566 (2020)

    Article  Google Scholar 

  43. Lee, J.: Heterogeneous-ants-based path planner for global path planning of mobile robot applications. Int. J. Control Autom. Syst. 15(4), 1754–1769 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoming You.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grants 61673258, 61075115 and in part by the Shanghai Natural Science Foundation under Grant 19ZR1421600.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., You, X. & Liu, S. Co-evolutionary Multi-Colony Ant Colony Optimization Based on Adaptive Guidance Mechanism and Its Application. Arab J Sci Eng 46, 9045–9063 (2021). https://doi.org/10.1007/s13369-021-05694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05694-5

Keywords

Navigation