Log in

Community Detection Utilizing a Novel Multi-swarm Fruit Fly Optimization Algorithm with Hill-Climbing Strategy

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The community detection methods based on evolutionary algorithm have become a hot research topic in recent years. However, most contemporary evolution-based community detection algorithms need many parameters in the initialization process and are characterized by complicated computational processes, which are puzzled for users to have a better understanding of these parameters on the performance of corresponding algorithm. In this paper, we first propose a new community detection method utilizing multi-swarm fruit fly optimization algorithm (CDMFOA), which needs only a few parameters and has a simple computational process. Moreover, we adopt the multi-swarm fruit fly strategy and hill-climbing method in community detection algorithm in order to resolve the premature convergence and improve the local search ability of CDMFOA. Meanwhile, we separately utilize modularity and modularity density as objective function in the framework of the CDMFOA, named CDMFOA_Q and CDMFOA_D, so as to check their detection abilities and accuracies in partitioning communities of complex networks. The experimental results on synthetic and real-world networks show that CDMFOA can effectively detect community structure in complex networks. Besides, we also demonstrate that the CDMFOA_D performs better than CDMFOA_Q and other traditional modularity-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eustace J., Wang X., Li J.: Approximating web communities using subspace decomposition. Knowl. Based Syst. 70, 118–127 (2014)

    Article  Google Scholar 

  2. Zhang X., Zhu J., Wang Q., Zhao H.: Identifying influential nodes in complex networks with community structure. Knowl. Based Syst. 42, 74–84 (2013)

    Article  Google Scholar 

  3. Gong M., Ma L., Zhang Q., Jiao L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Phys. A Stat. Mech. Appl. 391, 4050–4060 (2012)

    Article  Google Scholar 

  4. Gong M., Fu B., Jiao L., Du H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84, 056101 (2011)

    Article  Google Scholar 

  5. Guo C., Wang J., Zhang Z.: Evolutionary community structure discovery in dynamic weighted networks. Phys. A Stat. Mech. Appl. 413, 565–576 (2014)

    Article  Google Scholar 

  6. Xu, B.; Deng, L.; Jia, Y.; Zhou, B.; Han, Y.: Overlap** community detection on dynamic social network. In: Proceedings of the 6th International Symposium on Computational Intelligence and Design, Hangzhou, China, vol. 2, pp. 321–326 (2013)

  7. Shi C., Yan Z., Cai Y., Wu B.: Multi-objective community detection in complex networks. Appl. Soft Comput. 12, 850–859 (2012)

    Article  Google Scholar 

  8. Fortunato S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  9. Blondel V.D., Guillaume J.L.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)

    Article  Google Scholar 

  10. Newman M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 23, 8577–8582 (2006)

    Article  Google Scholar 

  11. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

  12. Clauset A., Newman M.E.J., Moore C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  13. Girvan M., Newman M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Newman M.E.J., Girvan M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  15. Holland J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan, Michigan (1975)

    Google Scholar 

  16. Kennedy J., Eberhart R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Article  Google Scholar 

  17. Storn R., Price K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moscato P., Cotta C.: An introduction to memetic algorithms. Intel. Artif. Rev. Iberoam. Intel. Artif. 19, 131–148 (2003)

    Google Scholar 

  19. Iba K.: Reactive power optimization by genetic algorithm. IEEE Trans. Power Syst. 9, 685–692 (1994)

    Article  Google Scholar 

  20. Tang Y., Gao H., Kurths J., Fang J.: Evolutionary pinning control and its application in UAV coordination. IEEE Trans. Ind. Inf. 8, 828–838 (2012)

    Article  Google Scholar 

  21. Tang Y., Gao H., Kurths J.: Multiobjective identification of controlling areas in neuronal networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 10, 708–720 (2013)

    Article  Google Scholar 

  22. Tang Y., Wang Z., Gao H., Qiao H., Kurths J.: On controllability of neuronal networks with constraints on the average of control gains. IEEE Trans. Cybern. 44, 2670–2681 (2014)

    Article  Google Scholar 

  23. Abdoul Soukour A., Devendeville L., Lucet C., Moukrim A.: A memetic algorithm for staff scheduling problem in airport security service. Expert Syst. Appl. 40, 7504–7512 (2013)

    Article  Google Scholar 

  24. ** Y., Hao J.-K., Hamiez J.-P.: A memetic algorithm for the minimum sum coloring problem. Comput. Oper. Res. 43, 318–327 (2014)

    Article  MathSciNet  Google Scholar 

  25. Tasgin, M.; Bingol, H.: Community detection in complex networks using genetic algorithm. In: Proceedings of the European Conference on Complex Systems (2006)

  26. Pizzuti, C.: GA-Net: A genetic algorithm for community detection. In: Proceedings of the 10th International Conference on Parallel Problem Solving from Nature, Germany, pp. 1081–1090 (2008)

  27. Pizzuti C.: A multiobjective genetic algorithm to find communities in complex. IEEE Trans. Evolut. Comput. 16, 418–430 (2012)

    Article  Google Scholar 

  28. Shang R., Bai J., Jiao L., ** C.: Community detection based on modularity and an improved genetic algorithm. Phys. A Stat. Mech. Appl. 392, 1215–1231 (2013)

    Article  Google Scholar 

  29. Gong M., Cai Q., Chen X., Ma L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evolut. Comput. 18, 82–97 (2014)

    Article  Google Scholar 

  30. Jia, G.; Cai, Z.; Musolesi, M.; Wang, Y.: Community detection in social and biological networks using differential evolution. In: Proceedings of the 6th International Conference on Learning and Intelligent Optimization, France, pp. 71–85 (2012)

  31. Amiri B., Hossain L., Crawford J.W., Wigand R.T.: Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowl. Based Syst. 46, 1–11 (2013)

    Article  Google Scholar 

  32. Pan W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  33. Zheng X.-L., Wang L., Wang S.-Y.: A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem. Knowl. Based Syst. 57, 95–103 (2014)

    Article  Google Scholar 

  34. Wang L., Zheng X.-L., Wang S.-Y.: A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowl. Based Syst. 48, 17–23 (2013)

    Article  Google Scholar 

  35. Pan W.-T.: Using modified fruit fly optimisation algorithm to perform the function test and case studies. Connect. Sci. 25, 151–160 (2013)

    Article  Google Scholar 

  36. Shan D., Cao G., Dong H.: LGMS-FOA: an improved fruit fly optimization algorithm for solving optimization problems. Math. Prob. Eng. 2013, 1–9 (2013)

    Google Scholar 

  37. Fortunato S., Barthelemy M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  38. Li, Z.; Zhang, S.; Wang, R.-S.; Zhang, X.-S.; Chen, L.: Quantitative function for community detection. Phys. Rev. E 77(3), 036109 (2008)

  39. Russell, S.; Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)

  40. Danon L., Diaz-Guilera A., Duch J., Arenas A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 9, P09008 (2005)

    Google Scholar 

  41. Lancichinetti A., Fortunato S., Radicchi F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)

    Article  Google Scholar 

  42. Zachary W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Google Scholar 

  43. Lusseau D., Schneider K., Boisseau O.J., Haase P., Slooten E., Dawson S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54, 396–405 (2003)

    Article  Google Scholar 

  44. Krebs, V.: http://www.orgnet.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhou, B., Li, S. et al. Community Detection Utilizing a Novel Multi-swarm Fruit Fly Optimization Algorithm with Hill-Climbing Strategy. Arab J Sci Eng 41, 807–828 (2016). https://doi.org/10.1007/s13369-015-1905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1905-5

Keywords

Navigation