Log in

State Space Least Mean Fourth Algorithm for Dynamic State Estimation in Power Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Power system dynamic state estimation (DSE) has always been a critical problem in studying power systems. One of the essential parts of power systems are synchronous machines. In this work, we dealt with the problem of DSE of a synchronous machine by introducing a novel state space-based least mean fourth (SSLMF) algorithm. The rationale behind the proposed algorithm is the fact that a power system may encounter non-Gaussian disturbances/state errors and the least mean fourth algorithm is proven to be better in such environments. Moreover, we have also introduced a normalized version of the proposed algorithm, namely state space normalized least mean fourth (SSNLMF) algorithm to deal with the stability issue under Gaussian disturbances. Another motivation for develo** the SSLMF algorithm is its simplicity as compared to other model-based nonlinear filtering algorithms such as Kalman filter, extended Kalman filter (EKF). Moreover, we also investigate the performance of the recently introduced state space least mean square (SSLMS). Performance of the SSLMF and the SSLMS is compared with existing EKF in both Gaussian and non-Gaussian noise environments. Extensive simulation results are presented which show superiority of the proposed algorithms, and hence, it verifies our rationale behind the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain, A.; Shivakumar, N.R.: Power system tracking and dynamic state estimation. In: IEEE PES Power Systems Conference and Exposition, Seattle, WA, pp. 1–8 (2009)

  2. Wu F.F.: Power system state estimation: a survey. Int. J. Electr. Power Energy Syst. 12(2), 80–87 (1990)

    Article  Google Scholar 

  3. Monticelli A.: Electric power system state estimation. Proc. IEEE 88(2), 262–282 (2000)

    Article  Google Scholar 

  4. Terzija V., Valverde G., Cai D., Regulski P., Madani V., Fitch J., Skok S., Begovic M., Phadke A.: Wide area monitoring, protection, and control of future electric power networks. Proc. IEEE 99(1), 80–93 (2011)

    Article  Google Scholar 

  5. Rosli H.M., Mokhlis H., Naidu K., Jamian J.J., Bakar A.H.A.: Improving state estimation accuracy through incremental meter placement using new evolutionary strategy. Arabian J. Sci. Eng. 39(11), 7981–7989 (2014)

    Article  Google Scholar 

  6. Abur A., Exposito A.G.: Power System State Estimation: Theory and Implementation, 1st edn. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  7. Aminifar F., Shahidehpour M., Fotuhi-Firuzabad M., Kamalinia S.: Power system dynamic state estimation with synchronized phasor measurements. IEEE Tran. Instrum. Meas. 63(2), 352–363 (2014)

    Article  Google Scholar 

  8. Jain, A.; Shivakumar, N.R.: Phasor Measurements in Dynamic State Estimation of power systems. In: IEEE Region 10 Conference TENCON, Hyderabad, pp. 1–6 (2008)

  9. Valverde G., Terzija V.: Unscented Kalman filter for power system dynamic state estimation. IET Gen. Transm. Distrib. 5(1), 29–37 (2011)

    Article  Google Scholar 

  10. Shih K.R., Huang S.J.: Application of a robust algorithm for dynamic state estimation of a power system. IEEE Trans. Power Syst. 17(1), 141–147 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ghahremani E., Kamwa I.: Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements. IEEE Trans. Power Syst. 26(4), 2556–2566 (2011)

    Article  Google Scholar 

  12. Ghahremani E., Kamwa I.: Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units. IEEE Trans. Energy Convers. 26(4), 1099–1108 (2011)

    Article  Google Scholar 

  13. Lin, L.; Linawati; Jasa, L.; Ambikairajah, E.: A hybrid state estimation scheme for power system, In: Proceedings IEEE Circuits and Systems Conference (1), pp. 555–558 (2002)

  14. Huanga M., Li W., Yana W.: Estimating parameters of synchronous generators using square-root unscented Kalman filter. Int. J. Elect. Power Syst. Res. 80(9), 1137–1144 (2010)

    Article  Google Scholar 

  15. Arjona M.A., Hernandez C., Cismeris-Gonzalez M., Escarela-Perez R.: Estimation of synchronous generator parameters using the standstill step-voltage test and a hybrid Genetic Algorithm. Inter. J. Electr. Power Energy Syst. 35(1), 105–111 (2012)

    Article  Google Scholar 

  16. Sarem, Y.N.; Poshtan, J.; Ghomi, M.; Poshtan, M.: Synchronous generator parameters estimation. In: International Conference Intelligent and Advanced Systems, pp. 870–875 (2007)

  17. Debs A.S., Larson R.E.: A dynamic estimator for tracking the state of a power system. IEEE Trans. Power App. Syst 89(7), 1670–1678 (1970)

    Article  Google Scholar 

  18. Huang, Z.; Schneider, K.; Neplocha, J.: Feasibility studies of applying Kalman filter techniques to power system dynamic state estimation. In: Proceedings International Power Engineering Conference (IPEC), pp. 376–382 (2007)

  19. Meng, D.; Zhou, N.; Lu, S.; Lin, G.: Estimate the electromechanical states using particle filtering and smoothing, In: IEEE Power and Energy Society General Meeting, San Diego, CA, USA, pp. 1–7 (2012)

  20. Zhou N., Meng D., Lu S.: Estimation of the dynamic states of synchronous machines using an extended particle filter. IEEE Tran. Power Syst. 28(4), 4152–4161 (2013)

    Article  Google Scholar 

  21. Haykin S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Upper-Saddle River (1996)

    Google Scholar 

  22. Sayed A.H.: Fundamentals of Adaptive Filtering. Wiley-Interscience, New York (2003)

    Google Scholar 

  23. Malik M.B., Salman M.: State-space least mean square. Digit. Signal Process 18(3), 334–345 (2008)

    Article  Google Scholar 

  24. Walach E., Widrow B.: The least mean fourth (LMF) adaptive algorithm and its family. IEEE Trans. Inf. Theory 30(2), 275–283 (1984)

    Article  Google Scholar 

  25. Moinuddin M., Zerguine A.: A unified performance analysis of the family of normalized least mean algorithms. Arabian J. Sci. Eng. 39(10), 7145–7157 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhou N., Lin L., Zhu J.: An approach to harmonic state estimation of power system. J. Electromagnet. Anal. Appl. 1(3), 192–194 (2009)

    Google Scholar 

  27. Zhai, M.: Estimation of impulse noise parameters in power line communications channel based on artificial neural networks. In: International Conference Signal Process, 3, (2006)

  28. Zimmermann M., Dostert K.: Analysis and Modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat. 44, 249–258 (2002)

    Article  Google Scholar 

  29. Chui C.K., Chen G.: Kalman Filtering With Real-Time Applications, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Arasaratnam I., Haykin S., Elliot R.J.: Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proc.IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  31. Wan, E.A.; Van der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: IEEE Proceedings of Symposium on Adaptive Systems for Signal Process., Communication and Control, Lake Louise, Alberta, Canada, pp. 153–158 (2000)

  32. Arasaratnam I., Haykin S.: Cubature Kalman Filters. IEEE Tran. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zerguine A., Chan M.K., Al-Naffouri T.Y., Moinuddin M., Cowan C.F.N.: Convergence and tracking analysis of a variable normalised LMF (XE-NLMF) algorithm. SignalProcess 89(5), 778–790 (2009)

    MATH  Google Scholar 

  34. Abadi M.S.E., Far A.M.: A unified framework for adaptive filter algorithms with variable step-size. Comput. Electr. Eng. 34(3), 232–249 (2008)

    Article  MATH  Google Scholar 

  35. Nascimento V.H., Bermudez J.C.M.: When is the least-mean fourth algorithm least-square stable?. IEEE Int. Conf. Acoust. Speech Signal Process 4, 341–344 (2005)

    Google Scholar 

  36. Eweda, E.; Zerguine, A.: A normalized least mean fourth algorithm with improved stability, In: Proceedings 44th Asilomar Conference Signals, System, Computer, pp. 1002–1005 (2010)

  37. Eremia M., Shahidehpour M.: Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control. Wiley-IEEE Press, NewYork (2013)

    Book  Google Scholar 

  38. Kundur P.: Power System Stability and Control. McGraw-Hill, NewYork (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Moinuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Moinuddin, M. & Al-Saggaf, U.M. State Space Least Mean Fourth Algorithm for Dynamic State Estimation in Power Systems. Arab J Sci Eng 41, 527–543 (2016). https://doi.org/10.1007/s13369-015-1698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1698-6

Keywords

Navigation