Log in

Enhancement of nutritional quality in maize kernel through marker-assisted breeding for vte4, crtRB1, and opaque2 genes

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Traditional maize is poor in vitamin-E [α-tocopherol (α-T): 6–8 ppm], vitamin-A [provitamin-A (proA): 1–2ppm], lysine (0.150–0.2–50%), and tryptophan (0.030–0.040%). Here, we combined favourable alleles of vte4, crtRB1, and opaque2 (o2) genes in the parents of maize hybrids, viz., APQH-10 (PMI-PV-9 × PMI-PV-14) and APQH-11 (PMI-PV-9 × PMI-PV-15) using molecular breeding. Gene-specific markers were successfully used to select vte4, crtRB1, and o2 in BC1F1, BC2F1, and BC2F2 generations. Simple sequence repeats (104–109) were used for background selection, leading to an average recovery of 94% recurrent parent genome. The introgressed inbreds possessed significantly higher α-T: 18.38 ppm, α-/γ-tocopherol (α-/γ-T: 52%), and α-/total tocopherol (α-/TT: 32%) compared to original inbreds (α-T: 8.17 ppm, α-/γ-T: 25%, α-/TT: 18%). These newly derived inbreds also possessed higher β-carotene (BC: 8.91 ppm), β-cryptoxanthin (BCX: 1.27 ppm), proA (9.54 ppm), lysine (0.348%), and tryptophan (0.082%) compared to traditional maize inbreds. The reconstituted hybrids recorded higher α-T (2.1-fold), α-/γ-T (1.9-fold), and α-/TT (1.6-fold) over the original hybrids. These reconstituted hybrids were also rich in BC (5.7-fold), BCX (3.3-fold), proA (5.3-fold), lysine (1.9-fold), and tryptophan (2.0-fold) over the traditional hybrids. The reconstituted hybrids had similar grain yield and phenotypic characteristics to original versions. These multinutrient-rich maize hybrids hold great potential to alleviate malnutrition in sustainable and cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amonelo MO, Roxas DB (2008) Growth performance of broilers fed a quality protein maize based diet. Philipp J Vet Med 34:11–22

    Google Scholar 

  • Andersson MS, Saltzman A, Virk PS, Pfeiffer WH (2017) Progress update: crop development of biofortified staple food crops under Harvestplus. Afr J Food Agric Nutr Dev 17:11905–11935. https://doi.org/10.18697/ajfand.78.HarvestPlus05

    Article  CAS  Google Scholar 

  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  CAS  PubMed  Google Scholar 

  • Bain LE, Awah PK, Geraldine N, Kindong NP, Siga Y, Bernard N, Tanjeko AT (2013) Malnutrition in Sub–Saharan Africa: burden, causes and prospects. Pan Afr Med J 15:120. https://doi.org/10.11604/pamj.2013.15.120.2535

    Article  PubMed  PubMed Central  Google Scholar 

  • Baveja A, Chhabra R, Panda KK, Muthusamy V, Zunjare RU, Hossain F (2020) Development and validation of multiplex-PCR assay to simultaneously detect favourable alleles of shrunken2, opaque2, crtRB1 and lcyE genes in marker-assisted selection for maize biofortification. J Plant Biochem & Biotechnol. https://doi.org/10.1007/s13562-020-00585-6

  • Bedre R (2020) reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit. Zenodo. https://doi.org/10.5281/zenodo.3965241

  • Benchimol LL, de Souza CL, de Souza AP (2005) Microsatellite-assisted backcross selection in maize. Genet Mol Biol 28:789–797. https://doi.org/10.1590/S1415-47572005000500022

    Article  Google Scholar 

  • Bouis HE, Saltzman A, Birol E (2019) Improving nutrition through biofortification. In: Fan S, Yosef S, Pandya-Lorch R (eds) Agriculture for Improved Nutrition: Seizing the Momentum. CAB International, pp 47–57

    Chapter  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Critical reviews produced within the EU Concerted Action 'Nutritional enhancement of plant-based food in European trade' (Neodiet) - Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Chahande RV, Kulwal PL, Mhase LB, Jadhav AS (2021) Validation of the markers linked with drought tolerance related traits for use in MAS programme in chickpea. J Genet 100:74. https://doi.org/10.1007/s12041-021-01324-z

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Muthusamy V, Zunjare RU, Baveja A, Chauhan HS, Bhat JS et al (2020) Genetic variability for kernel tocopherols and haplotype analysis of γ-tocopherol methyl transferase (vte4) gene among exotic-and indigenous-maize inbreds. J Food Compos Anal 88:103446

    Article  CAS  Google Scholar 

  • Das AK, Gowda MM, Muthusamy V, Zunjare RU, Chauhan HS, Baveja A, Bhatt V, Chand G, Bhat JS, Guleria SK, Saha S, Gupta HS, Hossain F (2021) Development of maize hybrids with enhanced vitamin-E, vitamin-A, lysine and tryptophan through molecular breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2021.659381

  • Duo H, Hossain F, Muthusamy V, Zunjare RU, Goswami R, Chand G, Mishra SJ, Chhabra R, Gowda MM, Pal S, Baveja A, Bhat JS, Kamboj MC, Kumar B, Joel JA, Khulbe R, Prakash B, Neeraja CN, Rakshit S, Yadav OP (2021) Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding. PLoS ONE 16(2):e0245497. https://doi.org/10.1371/journal.pone.0245497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JC, Kodali DR, Addis PB (2002) Optimal tocopherol concentrations to inhibit soybean oil oxidation. J Am Oil Chem Soc 79:47–51

    Article  CAS  Google Scholar 

  • Feng F, Wang Q, Liang C, Yang R, Li X (2015) Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica 206(2):513–521

    Article  CAS  Google Scholar 

  • Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna P, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Ferniej AR (2012) Vitamin deficiencies in humans: can plant science help? The Plant Cell 24:395–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gain N, Chhabra R, Chandra S, Zunjare RU, Dutta S, Chand G, Sarika K, Devi EL, Kumar A, Madhavan J, Muthusamy V, Hossain F (2022) Variation in anthocyanin pigmentation by R1-navajo gene, development and validation of breeder-friendly markers specific to C1-Inhibitor locus for in-vivo haploid production in maize. Mol Biol Rep. https://doi.org/10.1007/s11033-022-08214-2

  • Global Nutrition Report (2022) Stronger commitments for greater action. Executive summary. https://www.globalnutritionreport.org. Accessed 7 Aug 2022

  • Global Nutrition Report (2016) Washington, DC: International Food Policy Research Institute. Retrived from website https://www.globalnutritionreport.org. Accessed 2 Jan 2022

  • Goswami R, Zunjare R, Khan S, Baveja A, Muthusamy V, Hossain F (2019) Marker-assisted introgression of rare allele of β-carotene hydroxylase (crtRB1) gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breed. https://doi.org/10.1111/pbr.12676

  • Grebmer KV, Bernstein J, Patterson F, Wiemers M, Cheilleachair RN, Foley C, Gitter S, Ekstrom K, Fritschel H (2019) Global hunger index: the challenge of hunger and climate change. https://reliefweb.int/sites/reliefweb.int/files/resources/2019%20Global%20Hunger%20Index.pdf. Accessed 11 Mar 2022

  • Gunaratna NS, De-Groote H, Nestel P, Pixley KV, Mc-Cabe GP (2010) A meta-analysis of community-based studies on quality protein maize. Food Policy 35(3):202–210

    Article  Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V, Zunjare RU (2019) Marker-assisted breeding for enrichment of provitamin-A in maize. In: AMI Q et al (eds) Quality Breeding in Field Crops, Chapter-11, pp 139–157. https://doi.org/10.1007/978-3-030-04609-5_6

    Chapter  Google Scholar 

  • Gupta HS, Babu R, Agrawal PK, Mahajan V, Hossain F, Nepolean T (2013) Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed 132:77–82

    Article  CAS  Google Scholar 

  • Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A, Zunjare R, Thirunavukkarasu N, Saha S, Manjaiah KM, Prasanna BM, Gupta HS (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J. Genet 97:287–298. https://doi.org/10.1007/s12041-018-0914-z

    Article  CAS  PubMed  Google Scholar 

  • Hossain F, Muthusamy V, Zunjare RK, Gupta HS (2019a) Biofortification of Maize for Protein Quality and Provitamin-A Content. In: Jaiwal PK, Chhillar AK, Chaudhary D, Jaiwal R (eds) Nutritional quality improvement in plants. Springer, pp 115–136. https://doi.org/10.1007/978-3-319-95354-0_5

    Chapter  Google Scholar 

  • Hossain F, Sarika K, Muthusamy V, Zunjare RU, Gupta HS (2019b) Quality protein maize for nutritional security. In Quality breeding in field crops Springer, Cham, pp 217–237

    Google Scholar 

  • Hossain F, Rakshit S, Kumar B, Amalraj JJ, Muthusamy V, Prakash B, Zunjare RU, Karjagi C, Khulbe R, Arora A, Pramitha L, Choudhary D, Rao SVR, Raju MVLN, Kamboj MC (2021a) Molecular breeding for increasing nutrition quality in maize: recent progress. In: Henry R, Alam M, Seneweera S, Rakshit S, Hossain A (eds) Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield. CABI, UK, p 552

    Google Scholar 

  • Hossain F, Zunjare RU, Muthusamy V, Bhat JS, Mehta BK, Sharma DK, Talukder ZA, Chhabra R, Katral A, Dutta S, Chand G, Bhatt V, Mishra SJ, Gain N, Ikkurti G, Duo H (2021b) Biofortification of maize for nutritional security. In: Kumar et al (eds) Biofortification of staple crops. Springer Nature. https://doi.org/10.1007/978-981-16-3280-8_6

    Chapter  Google Scholar 

  • Hossain F, Zunjare RU, Muthusamy V, Kumar A, Madhavan J, Ikkurti G, Katral A, Talukder ZA, Chhabra R, Chand G, Bhatt V, Gul I, Mishra SJ, Duo H, Dutta S, Gain N, Chauhan P, Maman S, Reddappa SB, Kasana R (2023) Genetic improvement of specialty corn for nutritional quality traits. In book: Maize Improvement. Wani SH et al. 235-257. https://doi.org/10.1007/978-3-031-21640-4_11

  • Jiang YH, McGeachin RB, Bailey CA (1994) alpha-tocopherol, beta-carotene, and retinol enrichment of chicken eggs. Poult Sci 73(7):1137–1143. https://doi.org/10.3382/ps.0731137

    Article  CAS  PubMed  Google Scholar 

  • Kumar TPJ, Rai A, Singh SK, Kumar RR, Ahlawat AK, Saini S, Shukla RB, Bedi N, Singh AM (2022) Development of near isogenic lines for grain softness through marker assisted backcross breeding in wheat. J Plant Biochem Biotechnol 31:410–420. https://doi.org/10.1007/s13562-021-00712-x

    Article  CAS  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y et al (2012) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One 7(5):e36807. https://doi.org/10.1371/journal.pone.0036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jeffers D, Zhang Y, Ding M, Chen W, Kang MS et al (2015) Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers. Mol Breed 35(8):1–12

    Article  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  CAS  PubMed  Google Scholar 

  • Moreno JA, Díaz-Gómez J, Nogareda C, Angulo E, Sandmann G, Portero-Otin M, Serrano JC, Twyman RM, Capell T, Zhu C, Christou P (2016) The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci Rep 6:1–11

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS ONE 9(12):e113583

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyakurwa CS, Gasura E, Mabasa S (2017) Potential for quality protein maize for reducing protein energy undernutrition in maize dependent Sub-Saharan African countries: a review. Afr Crop Sci J 25:521–537

    Article  Google Scholar 

  • Protection of Plant Varieties and Farmers' Rights Authority (PPVFRA) (2007) Guidelines for the conduct of test for Distinctiveness, Uniformity and Stability on maize (Zea mays L.), pp 1–13. https://plantauthority.gov.in/sites/default/files/gmaize.pdf

  • Prakash B, Rao SVR, Raju MVLN, Hossain F, Vignesh M, Khulbe RK, Kumar B, Rakshit R (2021) Effect of feeding bio-fortified maize on performance and slaughter parameters in Vanaraja birds. Indian J Anim Res. https://doi.org/10.18805/IJAR.B-4272

  • Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T et al (2020) Molecular breeding for nutritionally enriched maize: status and prospects. Front Genet. https://doi.org/10.3389/fgene.2019.01392

  • Rajarathinam P, Palanisamy G, Ramakrishnan P, Narayana M, Alagirisamy M (2023) Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.). Mol Biol Rep 50:2411–2419. https://doi.org/10.1007/s11033-022-08234-y

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar KV, Prakash B, Lakshmi VK, Rao SVR, Raju MVLN (2020) Effect of feeding diet with alternate protein sources and quality protein maize on performance and nutrient utilization in broiler chickens. Trop Anim Health Prod. https://doi.org/10.1007/s11250-020-02251-4

  • Rani A, Taunk J, Jangra S, Yadav RC, Yadav NR, Yadav D, Yadav HP (2021) Development of advance pearl millet lines tolerant to terminal drought stress using marker-assisted selection. Vegetos. https://doi.org/10.1007/s42535-021-00284-0

  • Saha S, Walia S, Kundu A, Pathak N (2013) Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase. Anal Bioanal Chem 405:9285–9295

    Article  CAS  PubMed  Google Scholar 

  • Sarika K, Hossain F, Muthusamy V, Zunjare RU, Baveja A, Goswami R, Bhat JS, Saha S, Gupta HS (2018) Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci 272:142–152

    Article  CAS  PubMed  Google Scholar 

  • Sheftel J, Gannon BM, Davis CR, Tanumihardjo SA (2017) Provitamin A-biofortified maize consumption increases serum xanthophylls and 13C-natural abundance of retinol in Zambian children. Exp Biol Med. https://doi.org/10.1177/1535370217728500

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327

    Article  Google Scholar 

  • Singh AK, Ponnuswamy R, Prasad MS, Sundaram RM, ASH P, Senguttuvel P, KBK R, Sruthi K (2023) Improving blast resistance of maintainer line DRR 9B by transferring broad spectrum resistance gene Pi2 by marker assisted selection in rice. Physiol Mol Biol Plants 29:253–262. https://doi.org/10.1007/s12298-023-01291-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessema M, Gunaratna NS, Donato K, Cohen JL, Connell M, Belayneh D, Brouwer ID, Belachew T, Groote HD (2016) Translating the impact of quality protein maize into improved nutritional status for Ethiopian children: study protocol for a randomized controlled trial. BMC Nutr 2:54

    Article  Google Scholar 

  • Vasal SK, Villegas E, Bajarnason M et al (1980) Genetic modifiers and breeding strategies in develo** hard endosperm opaque-2 materials. In: Pollmer WG, Philips RH (eds) Improvement of quality traits for silage use. Martinus Nijhoff Publ, The Hague, Netherlands, pp 37–71

    Google Scholar 

  • Wang N, Yuan Y, Wang H, Yu D, Liu Y, Zhang A, Gowda M, Nair SK, Hao Z, Lu Y, Vicente FS, Prasanna BM, Li X, Zhang X (2020) Applications of genoty**-by-sequencing (GBS) in maize genetics and breeding. Sci Rep 10:16308. https://doi.org/10.1038/s41598-020-73321-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen-**g H, Lu-** F, De-rong G, Dong-sheng L, Sen L, Cheng-bin L (2023) Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. J Integr Agric 22:360–370

    Article  Google Scholar 

  • Winfield M, Burridge A, Ordidge M, Harper H, Wilkinson P, Thorogood D, Copas L, Edwards K, Barker G (2020) Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. PlosOne. https://doi.org/10.1371/journal.pone.0242940

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X et al (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42(4):322–327

    Article  CAS  PubMed  Google Scholar 

  • Yadava DK, Hossain F, Mohapatra T (2018) Nutritional security through crop biofortification in India: status and future prospects. Indian J Med Res 148:621–631. https://doi.org/10.4103/ijmr.IJMR_1893_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunjare RU, Hossain F, Muthusamy V, Baveja A, Chauhan HS, Bhat JS et al (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front Plant Sci 9:178. https://doi.org/10.3389/fpls.2018.00178

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank ICAR-IARI, New Delhi, for providing the field and lab facility. ICAR-IIMR, Ludhiana, is acknowledged for providing the off-season nursery at WNC, Hyderabad. We thank CIMMYT-HarvestPlus for providing the donor line. The help of CCSHAU, Uchani, in providing the original inbreds is thankfully acknowledged.

Funding

The authors received financial support from the ICAR-IARI, New Delhi, and DBT-Network project on “Enrichment of nutritional quality in maize through molecular breeding” (BT/PR10922/AGII/106/944/2014).

Author information

Authors and Affiliations

Authors

Contributions

FH and VM: development of backcross progenies. SKJ: genoty** of the segregating populations. VM and JSB :conduct of the trials. SJM and HSC: biochemical analysis. GC, VB, and AKD: recording of the phenotypic data. RUZ: generation of crosses and statistical analysis. FH: writing of the manuscript. FH and HSG: designing of the experiments. All authors approved the submission and publication of this manuscript.

Corresponding author

Correspondence to Firoz Hossain.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2999 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, F., Jaiswal, S.K., Muthusamy, V. et al. Enhancement of nutritional quality in maize kernel through marker-assisted breeding for vte4, crtRB1, and opaque2 genes. J Appl Genetics 64, 431–443 (2023). https://doi.org/10.1007/s13353-023-00768-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-023-00768-6

Keywords

Navigation