Log in

Complete chloroplast genome sequence of Camellia sinensis: genome structure, adaptive evolution, and phylogenetic relationships

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2023

This article has been updated

Abstract

The chloroplast (cp) genome holds immense potential for a variety of applications including species identification, phylogenetic analysis, and evolutionary studies. In this study, we utilized Illumina NovaSeq 6000 to sequence the DNA of Camellia sinensis L. cultivar ‘Zhuyeqi’, followed by the assembly of its chloroplast genome using SPAdes v3.10.1, with subsequent analysis of its features and phylogenetic placement. The results showed that the cp genome of ‘Zhuyeqi’ was 157,072 bp, with a large single-copy region (LSC, 86,628 bp), a small single-copy region (SSC,18,282 bp), and two inverted repeat regions (IR, 26,081 bp). The total AT and GC contents of the cp genome of ‘Zhuyeqi’ were observed to be 62.21% and 37.29%, respectively. The cp genome encoded 135 unique genes, including 90 protein-coding genes (CDS), 37 tRNA genes, and 8 rRNA genes. Moreover, 31 codons and 247 simple sequence repeats (SSRs) were identified. The cp genomes of ‘Zhuyeqi’ were found to be relatively conserved, with conservation observed in the IR region, which showed no evidence of inversions or rearrangements. The five regions with the largest variations were identified, with four regions (rps12, rps19, rps16, and rpl33) located in the LSC region and one divergent region (trnI-GAU) in the IR region. Phylogenetic analysis revealed that Camellia sinensis (KJ996106.1) was closely related to ‘Zhuyeqi’, indicating a close phylogenetic relationship between these two species. These findings could provide important genetic information for further research into breeding of tea tree, phylogeny, and evolution of Camellia sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession OL450428.1. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA779759, SRR16922592, and SAMN23075201, respectively.

Change history

References

  • Alzohairy AM (2011) BioEdit: an important software for molecular biology. Gerf Bull Biosci 2(1):60–61

    Google Scholar 

  • Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34(17):3030–3031

    Article  CAS  PubMed  Google Scholar 

  • Azim MK, Khan IA, Zhang Y (2014) Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. Plant Mol Biol 85(1):193–208

    Article  CAS  PubMed  Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci 92(25):11331–11338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao DL, Zhang XJ, **e SQ et al (2022) Application of chloroplast genome in the identification of traditional Chinese medicine Viola philippica. BMC Genomics 23(1):1–19

    Article  Google Scholar 

  • Chen Q, Wu XB, Zhang DQ (2019) Phylogenetic analysis of Fritillaria cirrhosa D. Don and its closely related species based on complete chloroplast genomes. Peer J 7:e7480

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Li JF, Zhang H et al (2017) The complete chloroplast genome sequence of strawberry (Fragaria× ananassa Duch.) and comparison with related species of Rosaceae. Peer J 5:e3919

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho KS, Cheon KS, Hong SY et al (2016) Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. Plant Cell Rep 35:2113–2123

    Article  CAS  PubMed  Google Scholar 

  • Ding P, Shao YH, Li Q, Gao JL, Zhang RJ, Lai XP, Wang DP, Zhang HY (2016) The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata. Mitochondrial DNA Part A 27(4):2347–2348

    Article  CAS  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8(1):92–94

    Article  CAS  PubMed  Google Scholar 

  • Guo DH, Li DM, Li H et al (2020) The complete chloroplast genome sequence of Vitis vinifera Muscat Hamburg. Mitochondrial DNA Part B 5(1):117–118

    Article  Google Scholar 

  • Hong SY, Cheon KS, Yoo KO et al (2019) Comparative analysis of the complete chloroplast genome sequences of three Amaranthus species. Plant Genet Resour 17(3):245–254

    Article  CAS  Google Scholar 

  • Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V (2017) Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci 8(1):204

    PubMed  PubMed Central  Google Scholar 

  • Kawakami S, Ebana K, Nishikawa T et al (2007) Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.). Genome 50(2):180–187

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Shin J, Oh DR et al (2020) Comparative analysis of complete chloroplast genome sequences and insertion-deletion (Indel) polymorphisms to distinguish five vaccinium species. Forests 11(9):927

    Article  Google Scholar 

  • Kimura M (1989) The neutral theory of molecular evolution and the world view of the neutralists. Genome 31(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DM, Zhao CY, Liu XF (2019b) Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: molecular structures and comparative analysis. Molecules 24(3):474

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Hu Y, He M et al (2021) Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 22(1):1–22

    Google Scholar 

  • Li Y, Sylvester SP, Li M et al (2019a) The complete plastid genome of Magnolia zenii and genetic comparison to Magnoliaceae species. Molecules 24(2):261

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Ye H, Zhang N et al (2022) Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae). Horticulturae 8(5):391

    Article  Google Scholar 

  • Loewe L, Charlesworth B, Bartolomé C et al (2006) Estimating selection on nonsynonymous mutations. Genetics 172(2):1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu RS, Li P, Qiu YX (2017) The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: comparative genomic and phylogenetic analyses. Front Plant Sci 7:2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo Z, Lou W, Chen Y et al (2020) The chloroplast genome of Carya illinoinensis: genome structure, adaptive evolution, and phylogenetic analysis. Forests 11(2):207

    Article  Google Scholar 

  • Necşulea A, Lobry JR (2007) A new method for assessing the effect of replication on DNA base composition asymmetry. Mol Biol Evol 24(10):2169–2179

    Article  PubMed  Google Scholar 

  • Ogihara Y, Isono K, Kojima T et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Report 18:243–253

    Article  CAS  Google Scholar 

  • Peden JF (1999) Analysis of codon usage. Biosystems 5:45–50

    Google Scholar 

  • Perkins AJ (2019) Molecular phylogenetics and species delimitation in annual species of Hydrocotyle (Araliaceae) from South Western Australia. Mol Phylogenet Evol 134(1):129–141

    Article  PubMed  Google Scholar 

  • Raveendar S, Na YW, Lee JR et al (2015) The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing. Molecules 20(7):13080–13088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi SK, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. Plant Mol Biol Report 5(9):2043–2049

    CAS  Google Scholar 

  • Takahashi D, Sakaguchi S, Isagi Y et al (2018) Comparative chloroplast genomics of series Sakawanum in genus Asarum (Aristolochiaceae) to develop single nucleotide polymorphisms (SNPs) and simple sequence repeat (SSR) markers. J For Res 23(6):387–392

    Article  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting est databases for the development and characterization of gene-derived ssr-markers in barley (Hordeum vulgarel.). Theor Appl Genet 106(3):411–422

    Article  CAS  PubMed  Google Scholar 

  • Trofimov D, Cadar D, Schmidt-Chanasit J et al (2022) A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex. Sci Rep 12(1):1–13

    Article  Google Scholar 

  • Van De Wiel CCM, Van Der Schoot J, Van Valkenburg JLCH, Duistermaat H, Smulders MJM (2009) DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides Lf), from non-invasive relatives. Mol Ecol Resour 9(4):1086–1091

    Article  PubMed  Google Scholar 

  • Wu L, Cui Y, Wang Q et al (2021) Identification and phylogenetic analysis of five Crataegus species (Rosaceae) based on complete chloroplast genomes. Planta 254:1–12

    Article  Google Scholar 

  • Yamane K, Kawahara T (2018) Size homoplasy and mutational behavior of chloroplast simple sequence repeats (cpSSRs) inferred from intra-and interspecific variations in four chloroplast regions of diploid and polyploid Triticum and Aegilops species. Genet Resour Crop Evol 65:727–743

    Article  CAS  Google Scholar 

  • Yan M, Zhao XQ, Zhou JQ et al (2019) The complete chloroplast genome of cultivated apple (Malus domestica Cv.‘Yantai Fuji 8’). Mitochondrial DNA Part B 4(1):1213–1216

    Article  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Zhong W, Mou F, Gong Y, Pu D, Ji P, Huang H, Yang Z, Zhang C (2017) The complete chloroplast genome sequence and phylogenetic analysis of Chuanminshen (Chuanminshenviolaceum Sheh et Shan). Physiol Mol Biol Plants 23(1):17

    Article  Google Scholar 

  • Zhai W, Duan XH, Zhang R et al (2019) Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol Phylogenet Evol 135:12–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhou T, Kanwal N, Zhao Y, Bai G, Zhao G, Completion of eight Gynostemma BL (2017) (Cucurbitaceae) chloroplast genomes: characterization, comparative analysis, and phylogenetic relationships. Front Plant Sci 8(1):1583

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4(4):259–263

    Article  CAS  PubMed  Google Scholar 

  • Zhao ML, Song Y, Ni J, Yao X, Tan YH, Xu ZF (2018) Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep 8(1):1–11

    Google Scholar 

  • Zhao Y, Qu D, Ma Y (2022) Characterization of the chloroplast genome of Argyranthemum frutescens and a comparison with other species in Anthemideae. Genes 13(10):1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Long W, Li X (2008) Patterns of synonymous codon usage bias in chloroplast genomes of seed plants. For Stud China 10:235–242

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by various sources, including the Outstanding Youth Project Supported by Scientific Research Fund of Hunan Provincial Education Department, grant number: 21B0782. Additionally, it received support from the Scientific Research Fund of Hunan Provincial Education Department, grant number: 22A0608.

Author information

Authors and Affiliations

Authors

Contributions

Zhiyin Chen: investigation, data curation, methodology, software, validation, writing — original draft, funding acquisition. Qing Liu and Ying **ao and Guihua Zhou: investigation, data curation, software, methodology, validation. Penghui Yu and **g Bai: investigation, data curation, software, methodology, validation. Hua Huang and Yihui Gong: conceptualization, investigation, data curation, methodology, writing — review and editing, visualization, validation, project administration, supervision, resources, funding acquisition.

Corresponding authors

Correspondence to Hua Huang or Yihui Gong.

Ethics declarations

Ethics approval

The experiments in this study comply with the current laws of China.

Consent for publication

The corresponding authors declare, on behalf of all co-authors, that the work described is original, previously unpublished research, and not under consideration for publication elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article contains an error. The author affiliations has been re-ordered to follow the originally submitted sequence in the accepted manuscript.

Supplementary information

ESM 1

(DOC 94 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, Q., **ao, Y. et al. Complete chloroplast genome sequence of Camellia sinensis: genome structure, adaptive evolution, and phylogenetic relationships. J Appl Genetics 64, 419–429 (2023). https://doi.org/10.1007/s13353-023-00767-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-023-00767-7

Keywords

Navigation