Log in

Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPG2 :

1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol

DSPE-mPEG2000 :

N-(carbonyl-methoxypolyethyleneglycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine

EPR:

Enhanced permeability and retention

HCC:

Hepatocellular carcinoma

HBS:

HEPES buffered saline

HBSS:

Hanks’ balanced salt solution

H&E:

Hematoxylin and eosin

HT:

Mild hyperthermia

MSPC:

1-stearoyl-2-lyso-sn-glycero-3-phosphocholine

RFA:

Radiofrequency ablation

RT:

Radiotherapy

ThermoDXR:

Thermosensitive liposomal doxorubicin

TNBC:

Triple negative breast cancer

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021;71:209–49.

  2. Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8:1–10.

    Article  Google Scholar 

  3. Soares RF, Garcia AR, Monteiro AR, Macedo F, Pereira TC, Carvalho JC, et al. Prognostic factors for early relapse in non-metastatic triple negative breast cancer — real world data. Rep Pract Oncol Radiother. 2021;26:563–72.

    PubMed  PubMed Central  Google Scholar 

  4. Baranova A, Krasnoselskyi M, Starikov V, Kartashov S, Zhulkevych I, Vlasenko V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. 2022;15:153.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  6. Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113.

    Article  CAS  PubMed  Google Scholar 

  7. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.

    Article  CAS  PubMed  Google Scholar 

  8. Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol. 1996;36:55–63.

    Article  CAS  PubMed  Google Scholar 

  9. O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYXTM/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–9.

    Article  PubMed  Google Scholar 

  10. Barenholz Y, Chezy. Doxil® — the first FDA-approved nano-drug: lessons learned. J Controlled Release. 2012;160:117–34.

  11. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article  CAS  PubMed  Google Scholar 

  12. Dawidczyk CM, Russell LM, Hultz M, Searson PC. Tumor accumulation of liposomal doxorubicin in three murine models: optimizing delivery efficiency. Nanomedicine. 2017;13:1637–44.

    Article  CAS  PubMed  Google Scholar 

  13. Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11:6944–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  PubMed  Google Scholar 

  15. Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A New temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft Model1. Cancer Res. 2000;60:1197–201.

    CAS  PubMed  Google Scholar 

  16. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, et al. Pulsed-high intensity focused ultrasound and low temperature–sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yarmolenko PS, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperth. 2010;26:485–98.

    Article  CAS  Google Scholar 

  18. Palmer GM, Boruta RJ, Viglianti BL, Lan L, Spasojevic I, Dewhirst MW. Non-invasive monitoring of intra-tumor drug concentration and therapeutic response using optical spectroscopy. J Controlled Release. 2010;142:457–64.

    Article  CAS  Google Scholar 

  19. Dunne M, Epp-Ducharme B, Sofias AM, Regenold M, Dubins DN, Allen C. Heat-activated drug delivery increases tumor accumulation of synergistic chemotherapies. J Controlled Release. 2019;308:197–208.

    Article  CAS  Google Scholar 

  20. Regenold M, Bannigan P, Evans JC, Waspe A, Temple MJ, Allen C. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomed Nanotechnol Biol Med. 2022;40:102484.

  21. Dou Y, Hynynen K, Allen C. To heat or not to heat: challenges with clinical translation of thermosensitive liposomes. J Controlled Release. 2017;249:63–73.

    Article  CAS  Google Scholar 

  22. Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperth. 2003;19:252–66.

    Article  CAS  Google Scholar 

  23. Dewhirst M, Viglianti BL, Lora-Michiels M, D.v.m PJH, Hanson MA. Thermal dose requirement for tissue effect: experimental and clinical findings. Thermal Treatment of Tissue: Energy Delivery and Assessment II [Internet]. SPIE; 2003 [cited 2024 Feb 4]. pp. 37–57. https://www-spiedigitallibrary-org.myaccess.library.utoronto.ca/conference-proceedings-of-spie/4954/0000/Thermal-dose-requirement-for-tissue-effect--experimental-and-clinical/https://doi.org/10.1117/12.476637.full.

  24. Song CW, Park HJ, Lee CK, Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperth. 2005;21:761–7.

    Article  CAS  Google Scholar 

  25. Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev. 2020;163–164:98–124.

    Article  PubMed  Google Scholar 

  26. Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs. 2009;10:550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. IJff M, Crezee J, Oei AL, Stalpers LJA, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. Int J Gynecol Cancer [Internet]. 2022 [cited 2023 Feb 16];32. https://ijgc.bmj.com/content/32/3/288.

  28. Sherar M, Liu F-F, Pintilie M, Levin W, Hunt J, Hill R, et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiation Oncology*Biology*Physics. 1997;39:371–80.

    Article  CAS  Google Scholar 

  29. Peeken JC, Vaupel P, Combs SE. Integrating hyperthermia into modern radiation oncology: what evidence is necessary? Front Oncol. 2017;7:132.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Notter M, Piazena H, Vaupel P. Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperth. 2017;33:227–36.

    Article  CAS  Google Scholar 

  31. Wang X, Regenold M, Dunne M, Bannigan P, Allen C. Data demonstrating the in vivo anti-tumor efficacy of thermosensitive liposome formulations of a drug combination in pre-clinical models of breast cancer. Data Brief. 2023;50:109545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dou YN, Zheng J, Foltz WD, Weersink R, Chaudary N, Jaffray DA, et al. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J Controlled Release. 2014;178:69–78.

    Article  CAS  Google Scholar 

  33. Staruch RM, Ganguly M, Tannock IF, Hynynen K, Chopra R. Enhanced drug delivery in rabbit VX2 tumours using thermosensitive liposomes and MRI-controlled focused ultrasound hyperthermia. Int J Hyperth. 2012;28:776–87.

    Article  CAS  Google Scholar 

  34. Besse HC, Barten-van Rijbroek AD, van der Wurff-Jacobs KMG, Bos C, Moonen CTW, Deckers R. Tumor Drug Distribution after local drug delivery by hyperthermia, in vivo. Cancers (Basel). 2019;11:1512.

  35. Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol. 2011;7:937–45.

    Article  CAS  PubMed  Google Scholar 

  36. Lyon PC, Gray MD, Mannaris C, Folkes LK, Stratford M, Campo L, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. Lancet Oncol. 2018;19:1027–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsieh Y-C, Wang H-E, Lin W-W, Roffler SR, Cheng T-C, Su Y-C, et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics. 2018;8:3164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110:103–11.

    Article  PubMed  Google Scholar 

  39. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Controlled Release. 2003;88:35–42.

    Article  CAS  Google Scholar 

  40. Chen JL-Y, Pan C-K, Lin Y-L, Tsai C-Y, Huang Y-S, Yang W-C, et al. Preclinical evaluation of PEGylated liposomal doxorubicin as an effective radiosensitizer in chemoradiotherapy for lung cancer. Strahlenther Onkol. 2021;197:1131–42.

    Article  PubMed  Google Scholar 

  41. Hagtvet E, Røe K, Olsen DR. Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer xenografts. Radiat Oncol. 2011;6:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davies C, de L, Lundstrøm LM, Frengen J, Eikenes L, Bruland ØS, Kaalhus O, et al. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res. 2004;64:547–53.

    Article  CAS  PubMed  Google Scholar 

  43. Hardenbergh PH, Recht A, Gollamudi S, Come SE, Hayes DF, Shulman LN, et al. Treatment-related toxicity from a randomized trial of the sequencing of doxorubicin and radiation therapy in patients treated for early stage breast cancer. Int J Radiation Oncol Biol Phys. 1999;45:69–72.

    Article  CAS  Google Scholar 

  44. Choksey A, Timm KN. Cancer therapy-induced cardiotoxicity—a metabolic perspective on pathogenesis, diagnosis and therapy. Int J Mol Sci. 2021;23:441.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chung SY, Oh J, Chang JS, Shin J, Kim KH, Chun K-H, et al. Risk of cardiac disease in patients with breast cancer: impact of patient-specific factors and individual heart dose from three-dimensional radiation therapy planning. Int J Radiation Oncol Biol Phys. 2021;110:473–81.

    Article  Google Scholar 

  46. Díaz-Gavela AA, Figueiras-Graillet L, Luis ÁM, Salas Segura J, Ciérvide R, del Cerro Peñalver E, et al. Breast radiotherapy-related cardiotoxicity. When, how, why. risk prevention and control strategies. Cancers (Basel). 2021;13:1712.

    Article  PubMed  Google Scholar 

  47. Valagussa P, Zambetti M, Biasi S, Moliterni A, Zucali R, Bonadonna G. Cardiac effects following adjuvant chemotherapy and breast irradiation in operable breast cancer. Ann Oncol. 1994;5:209–16.

    Article  CAS  PubMed  Google Scholar 

  48. Willers H, Azzoli CG, Santivasi WL, **a F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J. 2013;19:200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stutz E, Puric E, Ademaj A, Künzi A, Krcek R, Timm O, et al. Present practice of radiative deep hyperthermia in combination with radiotherapy in Switzerland. Cancers. 2022;14:1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wahl AO, Rademaker A, Kiel KD, Jones EL, Marks LB, Croog V, et al. Multi-institutional review of repeat irradiation of chest wall and breast for recurrent breast cancer. Int J Radiation Oncol Biol Phys. 2008;70:477–84.

    Article  Google Scholar 

  52. Westermann AM, Jones EL, Schem B-C, van der Steen-Banasik EM, Koper P, Mella O, et al. First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer. 2005;104:763–70.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Hong W, Che S, Zhang Y, Meng D, Shi F, et al. Outcomes for hyperthermia combined with concurrent radiochemotherapy for patients with cervical cancer. Int J Radiat Oncol Biol Phys. 2020;107:499–511.

    Article  PubMed  Google Scholar 

  54. Zagar TM, Higgins KA, Miles EF, Vujaskovic Z, Dewhirst MW, Clough RW, et al. Durable palliation of breast cancer chest wall recurrence with radiation therapy, hyperthermia, and chemotherapy. Radiother Oncol. 2010;97:535–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kouloulias VE, Dardoufas CE, Kouvaris JR, Gennatas CS, Polyzos AK, Gogas HJ, et al. Liposomal doxorubicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: a phase I/II trial. Clin Cancer Res. 2002;8:374–82.

    CAS  PubMed  Google Scholar 

  56. Besse HC, Bos C, Zandvliet MMJM, van der Wurff-Jacobs K, Moonen CTW, Deckers R. Triggered radiosensitizer delivery using thermosensitive liposomes and hyperthermia improves efficacy of radiotherapy: an in vitro proof of concept study. PLoS ONE. 2018;13:e0204063.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Leeuwen CM, Oei AL, Chin KWTK, Crezee J, Bel A, Westermann AM, et al. A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat Oncol. 2017;12:75.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int J Radiation Oncol Biol Phys. 1989;16:535–49.

    Article  CAS  Google Scholar 

  59. Mole RH. Whole body irradiation—radiobiology or medicine? BJR. 1953;26:234–41.

  60. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25–37.

    Article  PubMed  Google Scholar 

  61. Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40:10–24.

    Article  PubMed  Google Scholar 

  62. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41:503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111.

    Article  CAS  PubMed  Google Scholar 

  64. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23:487–500.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med. 2019;23:4854–65.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang L, Luo R, Onyshchenko K, Rao X, Wang M, Menz B, et al. Adding liposomal doxorubicin enhances the abscopal effect induced by radiation/αPD1 therapy depending on tumor cell mitochondrial DNA and cGAS/STING. J Immunother Cancer. 2023;11:e006235.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang X, Gao M, Xu R, Tao Y, Luo W, Wang B, et al. Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors. Front Immunol. 2022;13:969447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Repasky EA, Evans SS, Dewhirst MW. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res. 2013;1:210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peeters H, van Zwol EM, Brancato L, da Cunha MC, Bogers MG. Systematic review of the registered clinical trials for oncological hyperthermia treatment. Int J Hyperth. 2022;39:806–12.

    Article  CAS  Google Scholar 

  70. Huffman OG, Chau DB, Dinicu AI, DeBernardo R, Reizes O. Mechanistic insights on hyperthermic intraperitoneal chemotherapy in ovarian cancer. Cancers (Basel). 2023;15:1402.

    Article  CAS  PubMed  Google Scholar 

  71. Chi M-S, Yang K-L, Chang Y-C, Ko H-L, Lin Y-H, Huang S-C, et al. Comparing the effectiveness of combined external beam radiation and hyperthermia versus external beam radiation alone in treating patients with painful bony metastases: a phase 3 prospective, randomized, controlled trial. Int J Radiat Oncol Biol Phys. 2018;100:78–87.

    Article  PubMed  Google Scholar 

  72. Oei AL, Korangath P, Mulka K, Helenius M, Coulter JB, Stewart J, et al. Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. Int J Hyperth. 2019;36:47–63.

    Article  CAS  Google Scholar 

  73. Regenold M, Wang X, Kaneko K, Bannigan P, Allen C. Harnessing immunotherapy to enhance the systemic anti-tumor effects of thermosensitive liposomes. Drug Deliv Transl Res. 2023;13:1059–73.

    Article  CAS  PubMed  Google Scholar 

  74. Viglianti BL, Dewhirst MW, Boruta RJ, Park J-Y, Landon C, Fontanella AN, et al. Systemic anti-tumour effects of local thermally sensitive liposome therapy. Int J Hyperth. 2014;30:385–92.

    Article  CAS  Google Scholar 

  75. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Sig Transduct Target Ther. 2020;5:1–17.

    Article  Google Scholar 

  76. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197:893–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a CIHR project grant to C.A. The authors acknowledge the use of equipment in the Centre for Pharmaceutical Oncology (CPO) at the University of Toronto as well as at the STTARR Innovation Centre (University Health Network). Graphical abstract and Fig. 1 were created using Biorender.

Funding

This work was supported by a CIHR project grant to C.A (Grant Number PJT155905).

Author information

Authors and Affiliations

Authors

Contributions

Xuehan Wang: conceptualization, methodology, investigation, analysis, writing-original draft, writing-revision, and visualization. Christine Allen: conceptualization, writing-review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Christine Allen.

Ethics declarations

Ethics approval

All animal studies were conducted in accordance with the guidelines of the Animal Care Committee at the University Health Network (UHN, Toronto, ON, Canada).

Conflict of interest

The authors have no relevant interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Allen, C. Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01654-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01654-2

Keywords

Navigation