Log in

Quantitative assessment of the influence of cytochrome P450 2C19 gene polymorphisms and digestive tract cancer risk

  • Research Article
  • Published:
Tumor Biology

Abstract

Cytochrome P450 (CYP) 2C19 metabolizes many promutagens and procarcinogens to biologically active metabolites, which strongly promote proliferation of cancer cells in vitro and in vivo. The CYP2C19 gene exhibits several genetic polymorphisms that are thought to play a major role in inter-individual variability in drug response, drug–xenobiotic interactions, and in cancer susceptibility. Two polymorphisms of the CYP2C19 gene (CYP2C19*2, CYP2C19*3) which was associated with reduced enzyme activity have been investigated extensively digestive tract cancer; however, these studies have yielded contradictory results. To clarify this inconsistency, we performed this meta-analysis including 15 case–control studies with a total of 3,252 cases and 6,269 controls. Overall, we found significant association between CYP2C19*2 and digestive tract cancer (OR = 1.27, 95 % CI, 1.07–1.51, P = 0.007) while no significant results were found for CYP2C19*3. Potential sources of heterogeneity including cancer types, ethnicity, source of control, and sample size of study were assessed. In the subgroup analyses by cancer types, significant association was detected only in esophagus cancer for CYP2C19*2. When stratified by ethnicity, significantly increased risks were found for the CYP2C19*2 polymorphism among Asians. This meta-analysis demonstrated that the CYP2C19*2 polymorphism is a risk factor for develo** digestive tract cancer. However, additional very large-scale studies are warranted to provide conclusive evidence on the effects of the CYP2C19 gene on risk of digestive tract cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299:2423–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  4. Boffetta P, Couto E, Wichmann J, Ferrari P, Trichopoulos D, Bueno-de-Mesquita HB, et al. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2010;102:529–37.

    Article  CAS  PubMed  Google Scholar 

  5. Rosen HR. Clinical practice. Chronic hepatitis C infection. N Engl J Med. 2011;364:2429–38.

    Article  CAS  PubMed  Google Scholar 

  6. Cook MB, Kamangar F, Whiteman DC, Freedman ND, Gammon MD, Bernstein L, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J Natl Cancer Inst. 2010;102:1344–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Koizumi Y, Tsubono Y, Nakaya N, Kuriyama S, Shibuya D, Matsuoka H, et al. Cigarette smoking and the risk of gastric cancer: a pooled analysis of two prospective studies in Japan. Int J Cancer. 2004;112:1049–55.

    Article  CAS  PubMed  Google Scholar 

  8. Dragani TA. Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol. 2010;52:252–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25:193–200.

    Article  CAS  PubMed  Google Scholar 

  10. **e HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol. 2001;41:815–50.

    Article  CAS  PubMed  Google Scholar 

  11. Tribut O, Lessard Y, Reymann JM, et al. Pharmacogenomics. Med Sci Monit. 2002;8:RA152–63.

    CAS  PubMed  Google Scholar 

  12. Kappers WA, Edwards RJ, Murray S, Boobis AR. Diazinon is activated by CYP2C19 in human liver. Toxicol Appl Pharmacol. 2001;177:68–76.

    Article  CAS  PubMed  Google Scholar 

  13. Fujita K, Kamataki T. Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of Salmonella typhimurium YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ Mol Mutagen. 2001;38:339–46.

    Article  CAS  PubMed  Google Scholar 

  14. Yamazaki Y, Fujita K, Nakayama K, Suzuki A, Nakamura K, Yamazaki H, et al. Establishment of ten strains of genetically engineered Salmonella typhimurium TA1538 each co-expressing a form of human cytochrome P450 with NADPH-cytochrome P450 reductase sensitive to various promutagens. Mutat Res. 2004;562:151–62.

    Article  CAS  PubMed  Google Scholar 

  15. Fujita K, Kamataki T. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: application of genetically engineered Salmonella typhimurium YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. Mutat Res. 2001;483:35–41.

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues AD, Rushmore TH. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab. 2002;3:289–309.

    Article  CAS  PubMed  Google Scholar 

  17. He N, Yan FX, Huang SL, Wang W, **ao ZS, Liu ZQ, et al. CYP2C19 genotype and s-mephenytoin 4'-hydroxylation phenotype in a Chinese Dai population. Eur J Pharmacol. 2002;58:15–8.

    Article  CAS  Google Scholar 

  18. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  22. Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19:251–3.

    Article  CAS  PubMed  Google Scholar 

  23. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  24. Egger M, Davey Smith G, Schneider M. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shi Y, Luo GJ, Zhang L, Shi J, Zhang DQ, Chen JM, et al. Interaction between alcohol consumption and CYP 2C19 gene polymorphism in relation to oesophageal squamous cell carcinoma. PLoS One. 2012;7:e43412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sainz J, Rudolph A, Hein R, Hoffmeister M, Buch S, von Schönfels W, et al. Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocr Relat Cancer. 2011;18:265–76.

    Article  CAS  PubMed  Google Scholar 

  27. Isomura Y, Yamaji Y, Ohta M, Seto M, Asaoka Y, Tanaka Y, et al. A genetic polymorphism of CYP2C19 is associated with susceptibility to biliary tract cancer. J Gastroenterol. 2010;45:1045–52.

    Article  PubMed  Google Scholar 

  28. Chang FH, Zhang ZX, Bai TY, Wang MJ, Fan L, Ma J. The study on the polymorphisms of CYP2C19 genes associated with susceptibility to liver cancer. Zhongguo Yao Li Tong Xun. 2010;27:22–3.

    Google Scholar 

  29. Zhang WL, Sheyhidin I, Wu MB, Zhang Z, Li DS, Liu Z. Study on relations between genetic polymorphisms in CYP2C19, GSTT1 and risk of Kazakh’s esophageal cancer in **njiang. Shiyong Zhongliu Za Zhi. 2009;24:232–6.

    CAS  Google Scholar 

  30. Jiang W, Shao JG, Lu JR. Relationship between cytochrome P450 2C19 gene polymorphism and primary hepatocellular carcinoma. Wei Chang Bing Xue. 2008;13:39–41.

    Google Scholar 

  31. Yang ZF, Bi LF, Su XL. Cytochrome P450 and tumor susceptibility. Zhongliu Yan Jiu Yu Lin Chuang. 2008;20:65–7.

    CAS  Google Scholar 

  32. Tamer L, Ercan B, Ercan S, Ateş N, Ateş C, Ocal K, et al. CYP2C19 polymorphisms in patients with gastric and colorectal carcinoma. Int J Gastrointest Cancer. 2006;37:1–5.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou YL, Chen HF, Shi XS, Zhou ZJ, Li GQ, Pan PC, et al. A case-control study on the polymorphisms of NQO1 and susceptibility of esophageal cancer. Zhongguo Zhong Liu. 2006;15:659–63.

    CAS  Google Scholar 

  34. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics. 2005;15:535–46.

    Article  CAS  PubMed  Google Scholar 

  35. Sugimoto M, Furuta T, Shirai N, Nakamura A, Kajimura M, Sugimura H, et al. Poor metabolizer genotype status of CYP2C19 is a risk factor for develo** gastric cancer in Japanese patients with Helicobacter pylori infection. Aliment Pharmacol Ther. 2005;22:1033–40.

    Article  CAS  PubMed  Google Scholar 

  36. Mochizuki J, Murakami S, Sanjo A, Takagi I, Akizuki S, Ohnishi A. Genetic polymorphisms of cytochrome P450 in patients with hepatitis C virus-associated hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:1191–7.

    Article  CAS  PubMed  Google Scholar 

  37. Shi WX, Chen SQ. Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population. World J Gastroenterol. 2004;10:1961–3.

    CAS  PubMed  Google Scholar 

  38. Sachse C, Smith G, Wilkie MJ, Barrett JH, Waxman R, Sullivan F, et al. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis. 2002;23:1839–49.

    Article  CAS  PubMed  Google Scholar 

  39. Drögemöller BI, Wright GE, Niehaus DJ, Koen L, Malan S, Da Silva DM, et al. Characterization of the genetic profile of CYP2C19 in two South African populations. Pharmacogenomics. 2010;11:1095–103.

    Article  PubMed  Google Scholar 

  40. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121:512–8.

    Article  CAS  PubMed  Google Scholar 

  41. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem. 1994;269:15419–22.

    PubMed  Google Scholar 

  42. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics. 1994;4:285–99.

    Article  CAS  PubMed  Google Scholar 

  43. Han XM, Zhou HH. Polymorphism of CYP450 and cancer susceptibility. Acta Pharmacol Sin. 2000;21:673–9.

    CAS  PubMed  Google Scholar 

  44. Williams ML, Bhargava P, Cherrouk I, Marshall JL, Flockhart DA, Wainer IW. A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br J Clin Pharmacol. 2000;49:485–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997;40:297–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wallace TA, Martin DN, Ambs S. Interactions among genes, tumor biology and the environment in cancer health disparities: examining the evidence on a national and global scale. Carcinogenesis. 2011;32:1107–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Ming **ong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Wang, HC., Liu, JZ. et al. Quantitative assessment of the influence of cytochrome P450 2C19 gene polymorphisms and digestive tract cancer risk. Tumor Biol. 34, 3083–3091 (2013). https://doi.org/10.1007/s13277-013-0875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0875-z

Keywords

Navigation