Log in

Dietary flavonoids protect human brain microvascular endothelial cell from oxidative stress-induced dysfunction

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

The BBB plays a crucial role in the development of numerous neurological diseases and is especially vulnerable to oxidative stress. Human brain microvascular endothelial cells (HBMECs), the principal constituents of the BBB, significantly contribute to its formation and preservation. Increasing evidence indicates a potential inverse correlation between the consumption of dietary flavonoids and cardiovascular risk, which could be attributed to their antioxidative properties.

Objective

To explore the impact of four prevalent and abundant flavonoids on HBMECs within a microenvironment characterized by oxidative stress.

Results

Quercetin, apigenin, and genistein notably mitigated the adverse effects of H2O2-induced dysfunctions observed in various HBMEC events, including capillary network differentiation, growth, and survival. Moreover, these compounds reversed the oxidative stress provoked by H2O2, alongside reducing oxidative damage to lipids and DNA. Conversely, myricetin failed to reverse the H2O2-induced oxidative stress and did not exhibit any protective effects on HBMEC. Intriguingly, quercetin and apigenin elevated NRF2 and NQO1 levels in HBMEC, while genistein did not have the same effect.

Conclusions

Our research offers preclinical evidence indicating that certain flavonoids exhibit antioxidant effects, effectively reducing the dysfunction induced by oxidative stress in brain endothelial cells. This underscores the beneficial impact of flavonoids on the blood–brain barrier (BBB). Additionally, our findings propose potential strategies utilizing flavonoids for the treatment of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  • Albano GD, Gagliardo RP, Montalbano AM, Profita M (2022) Overview of the mechanisms of oxidative stress: impact in inflammation of the airway diseases. Antioxidants (Basel) 11(11):2237

    Article  CAS  PubMed  Google Scholar 

  • Alghamdi A, Almuqbil M, Alrofaidi MA, Burzangi AS, Alshamrani AA et al (2022) Potential antioxidant activity of apigenin in the obviating stress-mediated depressive symptoms of experimental mice. Molecules 27(24):9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmeier C, Mullan M, Paris D (2010) Characterization and use of human brain microvascular endothelial cells to examine beta-amyloid exchange in the blood-brain barrier. Cytotechnology 62(6):519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt S, Issa ME, Carpentier G, Cuendet M (2018) A bivalent role of genistein in sprouting angiogenesis. Planta Med 84(9–10):653–661

    CAS  PubMed  Google Scholar 

  • Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Cai F, Li B, Li J, Ding Y, Xu D et al (2023) Myricetin is effective and selective in inhibiting imatinib-resistant chronic myeloid leukemia stem and differentiated cells through targeting eIF4E. Anticancer Drugs 34(5):620–626

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Soto AF, Salas-Vidal E, Milan-Pacheco C, Sanchez-Carranza JN, Peralta-Zaragoza O et al (2019) Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells. Mol Med Rep 19(3):2097–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coyle CH, Kader KN (2007) Mechanisms of H2O2-induced oxidative stress in endothelial cells exposed to physiologic shear stress. ASAIO J 53(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72(5):648–672

    Article  CAS  PubMed  Google Scholar 

  • Dias MC, Pinto D, Silva AMS (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26(17):5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria A, Pestana D, Teixeira D, Azevedo J, De Freitas V et al (2010) Flavonoid transport across RBE4 cells: a blood-brain barrier model. Cell Mol Biol Lett 15(2):234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman A, Kaufer D (2015) Blood-brain barrier in health and disease. Semin Cell Dev Biol 38:1

    Article  PubMed  Google Scholar 

  • Fu J, Zeng W, Chen M, Huang L, Li S et al (2022a) Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1alpha expression in non-small cell lung carcinoma. Chem Biol Interact 361:109966

    Article  CAS  PubMed  Google Scholar 

  • Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37(3):287–303

    Article  CAS  PubMed  Google Scholar 

  • Garcia YJ, Rodriguez-Malaver AJ, Penaloza N (2005) Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods 144(1):127–135

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang T, Su J, Zhao Y, Chenchen, et al (2017) Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 40:157–162

    Article  CAS  PubMed  Google Scholar 

  • ** Z, Ke J, Guo P, Wang Y, Wu H (2019) Quercetin improves blood-brain barrier dysfunction in rats with cerebral ischemia reperfusion via Wnt signaling pathway. Am J Transl Res 11(8):4683–4695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juca MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRM et al (2020) Flavonoids: biological activities and therapeutic potential. Nat Prod Res 34(5):692–705

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YW, Lee WH (2008) Protective effects of genistein on proinflammatory pathways in human brain microvascular endothelial cells. J Nutr Biochem 19(12):819–825

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang JJ, Chen RJ, Chen L, Chen S et al (2022) Genistein mitigates oxidative stress and inflammation by regulating Nrf2/HO-1 and NF-kappaB signaling pathways in hypoxic-ischemic brain damage in neonatal mice. Ann Transl Med 10(2):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang HW, Qiu SF, Shen J, Sun LN, Wang JY et al (2008) Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett 438(1):116–120

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li CL, Xu QQ, Cheng D, Liu KD et al (2021) Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol Res Pract 222:153455

    Article  CAS  PubMed  Google Scholar 

  • Mohd Sairazi NS, Sirajudeen KNS (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Altern Med 2020:6565396

    Article  Google Scholar 

  • Moujahed S, Ruiz A, Hallegue D, Sakly M (2022) Quercetin alleviates styrene oxide-induced cytotoxicity in cortical neurons in vitro via modulation of oxidative stress and apoptosis. Drug Chem Toxicol 45(4):1634–1643

    Article  CAS  PubMed  Google Scholar 

  • Orsolic N, Goluza E, Dikic D, Lisicic D, Sasilo K et al (2014) Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur J Nutr 53(5):1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Zhao Y, Chen X, Zhao K, Zhai Q et al (2018) Apigenin protects the brain against ischemia/reperfusion injury via caveolin-1/VEGF in vitro and in vivo. Oxid Med Cell Longev 2018:7017204

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S (2021) Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front Endocrinol 12:779638

    Article  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22(1):19–34

    Article  CAS  PubMed  Google Scholar 

  • Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J et al (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena CM, Leandro A, Azul L, Seica R, Perry G (2018) Vascular oxidative stress: impact and therapeutic approaches. Front Physiol 9:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Wang B, Shi Y, **e C, Huang C et al (2021) Senolytic agent quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-kappaB axis. Osteoarthr Cartil 29(3):413–422

    Article  CAS  Google Scholar 

  • Sutrisno S, Aprina H, Simanungkalit HM, Andriyani A, Barlianto W et al (2018) Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis. J Tradit Complement Med 8(2):278–281

    Article  PubMed  Google Scholar 

  • Tarozzi A (2020) Oxidative stress in neurodegenerative diseases: from preclinical studies to clinical applications. J Clin Med 9(4):1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C Toxicol Carcinog 27(2):120–139

    Article  CAS  Google Scholar 

  • Wang H, Chen Y, Li P, Chen Y, Yu D et al (2022) Biphasic effects of statins on neuron cell functions under oxygen-glucose deprivation and normal culturing conditions via different mechanisms. Pharmacol Res Perspect 10(5):e01001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6):1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, Tagawa C, Matsufuji H, Chino M (2012) Dietary apigenin regulates high glucose and hypoxic reoxygenation-induced reductions in apelin expression in human endothelial cells. J Nutr Biochem 23(8):929–936

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang Y, Yu H, Li M, Hang L et al (2020) Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy. Oxid Med Cell Longev 2020:9420704

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant provided by the National Natural Science Funds of China (No. 81603095). We express our gratitude to Dr. Emily Johnson for her invaluable assistance in language editing and proofreading.

Funding

This work was supported by a research grant provided by the National Natural Science Funds of China (No. 81603095).

Author information

Authors and Affiliations

Authors

Contributions

ZLG designed and supervised the study, QT, XQY, LZC and KJ conducted the experiments, all authors analyzed and interpreted the data, QT prepared the manuscript, ZLG approved the submission.

Corresponding author

Correspondence to Zhenli Guo.

Ethics declarations

Conflict of interest

Qian Tan declares that she has no conflict of interest; **aoqiong Yan declares that she has no conflict of interest; Lizhu Chen declares that she has no conflict of interest; Kun Jiang declares that he has no conflict of interest; Zhenli Guo declares that she has no conflict of interest.

Ethical approval

This article does not involve any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Q., Yan, X., Chen, L. et al. Dietary flavonoids protect human brain microvascular endothelial cell from oxidative stress-induced dysfunction. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00461-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00461-7

Keywords

Navigation