Log in

Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier

  • AI Notes
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Millions of people around the world are affected by arrhythmias, which are abnormal activities of the functioning of the heart. Most arrhythmias are harmful to the heart and can suddenly become life-threatening. The electrocardiogram (ECG) is an important non-invasive tool in cardiology for the diagnosis of arrhythmias. This work proposes a computer-aided diagnosis (CAD) system to automatically classify different types of arrhythmias from ECG signals. First, the auto-encoder convolutional network (ACN) model is used, which is based on a one-dimensional convolutional neural network (1D-CNN) that automatically learns the best features from the raw ECG signals. After that, the support vector machine (SVM) classifier is applied to the features learned by the ACN model to improve the detection of arrhythmic beats. This classifier detects four different types of arrhythmias, namely the left bundle branch block (LBBB), right bundle branch block (RBBB), paced beat (PB), and premature ventricular contractions (PVC), along with the normal sinus rhythms (NSR). Among these arrhythmias, PVC is particularly a dangerous type of heartbeat in ECG signals. The performance of the model is measured in terms of accuracy, sensitivity, and precision using a tenfold cross-validation strategy on the MIT-BIH arrhythmia database. The obtained overall accuracy of the SVM classifier was 98.84%. The result of this model is portrayed as a better performance than in other literary works. Thus, this approach may also help in further clinical studies of cardiac cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. World Health Organization, “Cardiovascular diseases (CVDs),” 2017. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 2020.

  2. National Heart Lung and Blood Institute, “Types of arrhythmias,” 2011. https://www.nhlbi.nih.gov/health/health-topics/topics/arr/types. Accessed 2020.

  3. Schneider JF, Thomas HE Jr, Kreger BE, McNamara PM, Kannel WB (1979) Newly acquired left bundle-branch block: the Framingham study. Ann Intern Med 90(3):303–310. https://doi.org/10.7326/0003-4819-90-3-303

    Article  CAS  PubMed  Google Scholar 

  4. Fahy GJ, Pinski SL, Miller DP, McCabe N, Pye C, Walsh MJ, Robinson K (1996) Natural history of isolated bundle branch block. Am J Cardiol 77(14):1185–1190. https://doi.org/10.1016/S0002-9149(96)00160-9

    Article  CAS  PubMed  Google Scholar 

  5. Thrainsdottir IS, Hardarson T, Thorgeirsson GEA, Sigvaldason H, Sigfusson N (1993) The epidemiology of right bundle branch block and its association with cardiovascular morbidity—the Reykjavik Study. Eur Heart J 14(12):1590–1596. https://doi.org/10.1093/eurheartj/14.12.1590

    Article  CAS  PubMed  Google Scholar 

  6. Binici Z, Intzilakis T, Nielsen OW, Køber L, Sajadieh A (2010) Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation 121(17):1904–1911. https://doi.org/10.1161/CIRCULATIONAHA.109.874982

    Article  CAS  PubMed  Google Scholar 

  7. Engström G, Hedblad B, Juul-Möller S, Tydén P, Janzon L (2000) Cardiac arrhythmias and stroke: increased risk in men with high frequency of atrial ectopic beats. Stroke 31(12):2925–2929. https://doi.org/10.1161/01.STR.31.12.2925

    Article  PubMed  Google Scholar 

  8. Fleg JL, Kennedy HL (1982) Cardiac arrhythmias in a healthy elderly population: detection by 24-hour ambulatory electrocardiography. Chest 81(3):302–307. https://doi.org/10.1378/chest.81.3.302

    Article  CAS  PubMed  Google Scholar 

  9. The European Society for Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 https://www.escardio.org/Education/COVID-19and-Cardiology/ESCCOVID-19-Guidance. Accessed 2020.

  10. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM (1990) Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67(4):871–885. https://doi.org/10.1161/01.RES.67.4.871

    Article  CAS  PubMed  Google Scholar 

  11. Atal DK, Singh M (2020) Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Comput Methods Progr Biomed 196:105607. https://doi.org/10.1016/j.cmpb.2020.105607

    Article  Google Scholar 

  12. Wu M, Lu Y, Yang W, Wong SY (2021) A study on arrhythmia via ECG signal classification using the convolutional neural network. Front Comput Neurosci. https://doi.org/10.3389/fncom.2020.564015

    Article  PubMed  PubMed Central  Google Scholar 

  13. Houssein EH, Kilany M, Hassanien AE (2017) ECG signals classification: a review. Int J Intell Eng Inform 5(4):376–396. https://doi.org/10.1504/IJIEI.2017.087944

    Article  Google Scholar 

  14. Lin CC, Yang CM (2014) Heartbeat classification using normalized RR intervals and wavelet features. In: 2014 International symposium on computer, consumer and control. IEEE. https://doi.org/10.1109/IS3C.2014.175, pp. 650–653

  15. Zhang Z, Dong J, Luo X, Choi KS, Wu X (2014) Heartbeat classification using disease-specific feature selection. Comput Biol Med 46:79–89. https://doi.org/10.1016/j.compbiomed.2013.11.019

    Article  PubMed  Google Scholar 

  16. Huang H, Liu J, Zhu Q, Wang R, Hu G (2014) A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals. Biomed Eng Online 13(1):1–26. https://doi.org/10.1186/1475-925X-13-90

    Article  Google Scholar 

  17. Park KS, Cho BH, Lee DH, Song SH, Lee JS, Chee YJ et al. (2008). Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function. In 2008 Computers in cardiology. IEEE. https://doi.org/10.1109/CIC.2008.4749019, pp. 229–232

  18. De Lannoy G, François D, Delbeke J, Verleysen M (2010) Weighted SVMs and feature relevance assessment in supervised heart beat classification. In International joint conference on biomedical engineering systems and technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18472-7_17, pp. 212–223

  19. Cheng P, Dong X (2017) Life-threatening ventricular arrhythmia detection with personalized features. IEEE Access 5:14195–14203. https://doi.org/10.1109/ACCESS.2017.2723258

    Article  Google Scholar 

  20. Ye C, Kumar BV, Coimbra MT (2012) Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng 59(10):2930–2941. https://doi.org/10.1109/TBME.2012.2213253

    Article  PubMed  Google Scholar 

  21. Alickovic E, Subasi A (2015) Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases. Circuits Syst Signal Process 34(2):513–533. https://doi.org/10.1007/s00034-014-9864-8

    Article  Google Scholar 

  22. Li D, Zhang H, Zhang M (2017) Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias. Circuits Syst Signal Process 36(7):2828–2846. https://doi.org/10.1007/s00034-016-0439-8

    Article  Google Scholar 

  23. De Lannoy G, François D, Delbeke J, Verleysen M (2011) Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans Biomed Eng 59(1):241–247. https://doi.org/10.1109/TBME.2011.2171037

    Article  PubMed  Google Scholar 

  24. Sharma M, Tan RS, Acharya UR (2019) Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters. Inform Med Unlocked 16:100221. https://doi.org/10.1016/j.imu.2019.100221

    Article  Google Scholar 

  25. Ebrahimnezhad H, Khoshnoud S (2013). Classification of arrhythmias using linear predictive coefficients and probabilistic neural network. Appl Med Inform 33(3): 55–62. https://ami.info.umfcluj.ro/index.php/AMI/article/view/434

  26. Thomas M, Das MK, Ari S (2015) Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-Int J Electron Commun 69(4):715–721. https://doi.org/10.1016/j.aeue.2014.12.013

    Article  Google Scholar 

  27. Pandey SK, Janghel RR (2020) Automatic arrhythmia recognition from electrocardiogram signals using different feature methods with long short-term memory network model. SIViP 14(6):1255–1263. https://doi.org/10.1007/s11760-020-01666-8

    Article  Google Scholar 

  28. Nurmaini S, Umi Partan R, Caesarendra W, Dewi T, Naufal Rahmatullah M, Darmawahyuni A et al (2019) An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Appl Sci 9(14):2921. https://doi.org/10.3390/app9142921

    Article  Google Scholar 

  29. Hong S, Zhou Y, Wu M, Shang J, Wang Q, Li H, **e J (2019) Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiologicalmeasurement 40(5):054009. https://doi.org/10.1088/1361-6579/ab15a2

    Article  Google Scholar 

  30. Yang J, Bai Y, Lin F, Liu M, Hou Z, Liu X (2018) A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int J Mach Learn Cybern 9(10):1733–1740. https://doi.org/10.1007/s13042-017-0677-5

    Article  CAS  Google Scholar 

  31. Yıldırım Ö, Pławiak P, Tan RS, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102:411–420. https://doi.org/10.1016/j.compbiomed.2018.09.009

    Article  PubMed  Google Scholar 

  32. Oh SL, Ng EY, San Tan R, Acharya UR (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 102:278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002

    Article  PubMed  Google Scholar 

  33. Hou B, Yang J, Wang P, Yan R (2019) LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans Instrum Meas 69(4):1232–1240. https://doi.org/10.1109/TIM.2019.2910342

    Article  Google Scholar 

  34. Pandey SK, Janghel RR (2021) Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier. Phys Eng Sci Med 44(1):173–182. https://doi.org/10.1007/s13246-020-00965-1

    Article  PubMed  Google Scholar 

  35. Bouaziz F, Oulhadj H, Boutana D, Siarry P (2019) Automatic ECG arrhythmias classification scheme based on the conjoint use of the multi-layer perceptron neural network and a new improved metaheuristic approach. IET Signal Process 13(8):726–735. https://doi.org/10.1049/iet-spr.2018.5465

    Article  Google Scholar 

  36. Chen C, Hua Z, Zhang R, Liu G, Wen W (2020) Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Process Control 57:101819. https://doi.org/10.1016/j.bspc.2019.101819

    Article  Google Scholar 

  37. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220. https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  38. Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50. https://doi.org/10.1109/51.932724

    Article  CAS  PubMed  Google Scholar 

  39. Xu SS, Mak MW, Cheung CC (2018) Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE J Biomed Health Inform 23(4):1574–1584. https://doi.org/10.1109/JBHI.2018.2871510

    Article  PubMed  Google Scholar 

  40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  41. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge

    Google Scholar 

  42. De Albuquerque VHC, Nunes TM, Pereira DR, Luz EJDS, Menotti D, Papa JP, Tavares JMR (2018) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 29(3):679–693. https://doi.org/10.1007/s00521-016-2472-8

    Article  Google Scholar 

  43. Sraitih M, Jabrane Y, Hajjam El Hassani A (2021) An automated system for ECG arrhythmia detection using machine learning techniques. J Clin Med 10(22):5450. https://doi.org/10.3390/jcm10225450

    Article  PubMed  PubMed Central  Google Scholar 

  44. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  Google Scholar 

  45. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1109/JSEN.2021.3114266

    Article  Google Scholar 

  46. Abualigah L, Diabat A, Sumari P, Gandomi AH (2021) Applications, deployments, and integration of internet of drones (iod): a review. IEEE Sens J. https://doi.org/10.1109/JSEN.2021.3114266

    Article  Google Scholar 

  47. Li H, Yuan D, Ma X, Cui D, Cao L (2017) Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep41011

    Article  CAS  Google Scholar 

  48. Sahoo S, Kanungo B, Behera S, Sabut S (2017) Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108:55–66. https://doi.org/10.1016/j.measurement.2017.05.022

    Article  Google Scholar 

  49. Jung WH, Lee SG (2017) An arrhythmia classification method in utilizing the weighted KNN and the fitness rule. IRBM 38(3):138–148. https://doi.org/10.1016/j.irbm.2017.04.002

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Ojha.

Ethics declarations

Conflict of interest

Author Manoj Kumar Ojha declares that he/she has no conflict of interest. Author Dr. Sulochna Wadhwani declares that he/she has no conflict of interest. Author Dr. Arun Kumar Wadhwani declares that he/she has no conflict of interest. Author Dr. Anupam Shukla declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, M.K., Wadhwani, S., Wadhwani, A.K. et al. Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier. Phys Eng Sci Med 45, 665–674 (2022). https://doi.org/10.1007/s13246-022-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01119-1

Keywords

Navigation