Log in

Comparison of Blood Viscoelasticity in Pediatric and Adult Cardiac Patients

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Evidence is accumulating that blood flow patterns in the cardiovascular system and in cardiovascular devices do, in some instances, depend on blood viscoelasticity. Thus, to better understand the challenges to providing circulatory support and surgical therapies for pediatric and adult patients, viscous and elastic components of complex blood viscoelasticity of 31 pediatric patients were compared to those of 29 adult patients with a Vilastic-3 rheometer. A random effects model with categorical age covariates found statistically significant differences between pediatric and adult patients for log viscosity (p = 0.005). Log strain (p < 0.0001) and hematocrit (p < 0.0001) effects were also significant, as were the hematocrit-by-log-strain (p = 0.0006) and age-by-log strain (p = 0.001) interactions. The hematocrit-by-age interaction was not significant. For log elasticity, age differences were insignificant (p = 0.39). The model for log elasticity had significant log strain (p < 0.0001), log strain squared (p < 0.0001) and hematocrit (p < 0.0001) effects, as well as hematocrit-by-log-strain and hematocrit-by-log-strain-squared interactions (p = 0.014). A model for log viscosity with continuous age was also fit to the data, which can be used to refine cardiovascular device design and operation to the age of the patient. We conclude that there are distinct differences between pediatric and adult blood viscosity, as well as substantial variation within the pediatric population, that may impact the performance of devices and procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Anadere, I., H. Chmiel, H. Hess and G. B. Thurston. Clinical blood rheology. Biorheology 16:171–178, 1979.

    Google Scholar 

  2. Anwar, M. A., M. W. Rampling, S. Bignall and R. P. Rivers. The variation with gestational age of the rheological properties of the blood of the new-born. Br. J. Haematol. 86(1):163–168, 1994.

    Article  Google Scholar 

  3. Bachmann, C., G. Hugo, G. Rosenburg, et al. Fluid dynamics of pediatric ventricular assist device. Artif. Organs 24: 362–372, 2000.

    Article  Google Scholar 

  4. Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik, W. J. Weiss and T. R. Hoke. The National Heart Lung and Blood Institute Pediatric Ciruclatory Support Program. Circulation 113:147–155, 2006.

    Article  Google Scholar 

  5. Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik and W. J. Weiss. The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program: a summary of the 5-year experience. Circulation 123:1233–1240, 2011.

    Article  Google Scholar 

  6. Blume, E. D., D. N. Rosenthal, J. W. Rossano, J. T. Baldwin, P. Eghtesady, D. L. S. Morales, R. S. Cantor, J. Conway, A. Lorts, C. S. Almond, D. C. Naftel, J. K. Kirklin and PediMACS Investigators. Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J. Heart Lung Transplant 35:578–584, 2016.

    Article  Google Scholar 

  7. Burton, A. C. Physiology and Biophysics of the Circulation. Chicago: Year Book Medical Publishers Incorporated, 1972, pp. 39–48.

    Google Scholar 

  8. Cheung A., K. Chorpenning, D. Tamez, C. Shambaugh, Jr, A. E. Dierlam, M. E. Taskin, M. Ashenuga, C. Reyes and J. A. LaRose. Design concepts and preclinical results of a miniaturized HeartWare platform: The MVAD system. Innovations 10:3:151–156, 2015.

    Google Scholar 

  9. Chmiel, H., I. Anadere and E. Walitza. The determination of blood viscoelasticity in clinical hemorheology. Clin. Hemorheol. 10:363–374, 1990.

    Google Scholar 

  10. Eckmann D. M., S. Bowers, M. Stecker and A. Cheung. Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg. 91: 539–545, 2000.

    Article  Google Scholar 

  11. Foley, M. E., D. M. Isherwood and G. P. McNichol. Viscosity, haematocrit, fibrinogen and plasma proteins in maternal and cord blood. Br. J. Obstet. Gynaecol. 85:500–504, 1978.

    Article  Google Scholar 

  12. Giridharan, G. A., S. C. Koenig, K. G. Soucy, Y. Choi, T. Pirbodaghi, C. R. Bartoli, G. Monreal, M. A. Sobieski, E. Schumer, A. Cheng and M. S. Slaughter. Left ventricular volume unloading with axial and centrifugal rotary blood pumps. ASAIO J. 61:292–300, 2015.

    Article  Google Scholar 

  13. Good, B. C., S. Deutsch, and K. B. Manning. Hemodynamics in a pediatric ascending aorta using a viscoelastic pediatric blood model. Ann. Biomed. Eng. 44(4):1019–1035, 2016.

    Article  Google Scholar 

  14. Heatley G., P. Sood, D. Goldstein, N. Uriel, J. Cleveland, D. Middlebrook and M. R. Mehra. Clinical trial design and rationale of the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Heart Lung Transplant 35:528–536, 2016.

    Article  Google Scholar 

  15. Isogai, Y., S. Ikemoto and K. Kuchiba. Abnormal blood viscoelasticity in diabetic microangiopathy. Clin. Hemorheol. 11: 175–182, 1991.

    Google Scholar 

  16. Käber, U., H. Kroemer, G. Altrock and P. Heimburg. Reference ranges of viscoelasticity of human blood. Biorheology, 25: 727–741, 1988.

    Google Scholar 

  17. Kameneva, M. V., J. F. Antaki, H. S. Borovetz, B. P. Griffith, K. C. Butler, K. K. Yelswarapu, M. J. Watach and R. L. Kormos. Mechanisms of red blood cell trauma in assisted circulation: rheologic similarities of red blood cell transformations due to natural aging and mechanical stress. ASAIO J. 41(3):M457–M460, 1995.

    Article  Google Scholar 

  18. Kasser, U., P. Heimburge and E. Walitza. Viscoelasticity of whole blood and its dependence on laboratory parameters. Clin. Hemorheol. 9:307–312, 1989.

    Google Scholar 

  19. Kormos, R. L., H. S. Borovetz, B. P. Griffith and T. C. Hung. Rheologic abnormalities in patients with the Jarvik-7 total artificial heart. ASAIO J. 33:413–417, 1987.

    Google Scholar 

  20. Leverett, L. B., J. D. Hellums, C. P. Alfrey and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12: 257–273, 1972.

    Article  Google Scholar 

  21. Long, J. A., A. Ündar, K. B. Manning and S. Deutsch. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J. 51:563–566, 2005.

    Article  Google Scholar 

  22. Long, T. C., J. J. Pearson, A. C. Hankinson, S. Deutsch and K. B. Manning. An in vitro fluid dynamic study of pediatric cannulae: the value of animal studies to predict human flow. J. Biomech. Eng. 134:044501-1–044501-16, 2012.

    Article  Google Scholar 

  23. Merchant, R. H., S. D. Phadke, V. S. Sakhalkar, V. S. Agashe and R. R. Puniyani. Hematocrit and whole blood viscosity in newborns: analysis of 100 cases. Indian Pediatr. 29: 555–561, 1992.

    Google Scholar 

  24. Moazami, N., K. I. Fukamachi, M. Kobayashi, N. G. Smedira, K. J. Hoercher, A. Massiello, S. Lee, D. J. Horvath and R. C. Starling. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J. Heart Lung Transplant. 32:1–11, 2013.

    Article  Google Scholar 

  25. O’Connor, M. J. and J. W. Rossano. Ventricular assist devices in children. Curr. Opin. Cardiol. 29:113–121, 2014.

    Article  Google Scholar 

  26. Pantalos, G.M., D.E. Abel, A. Ravisankar, T. J. Horrell, C. Lind, A. Funk, E. A. Austin III and C. E. Mascio. In vitro pum** performance evaluation of the Ension pediatric cardiopulmonary assist system for venoarterial and venovenous ECMO. Cardiovasc. Eng. Technol. 3(3):250–262, 2012.

    Article  Google Scholar 

  27. Rampling, M. W., P. Whittingstall, G. Martin, S. Bignall, R. P. Rivers, T. J. Lissauer and P. C. Bailey. A comparison of the rheologic properties of neonatal and adult blood. Pediatr. Res. 25(5):457–460, 1989.

    Article  Google Scholar 

  28. Rossano, J. W., A. Lorts, C. J. VanderPluym, A. Jeewa, K. J. Guleserian, M. S. Bleiweis, O. Reinhartz, E. D. Blume, D. N. Rosenthal, D. C. Naftel, R. S. Cantor and J. K. Kirklin. Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: A report from the pediatric interagency registry for mechanical circulatory support (PediMACS). J. Heart Lung Transplant 35:585–590, 2016.

    Article  Google Scholar 

  29. Sahoo, T. K., S. Chauhan, A. Bisoi and U. Kiran. Effects of hemodilution on outcome after modified Blalock–Taussig shunt operation in children with cyanotic congenital heart disease. J. Cardiothorac. Vasc. Anesth. 21(2):179–183, 2007.

    Article  Google Scholar 

  30. Slaughter M. S., C. R. Bartoli, M. A. Sobieski, G. M. Pantalos, G. A. Giridharan, R. D. Dowling, S. D. Prabhu, D. J. Farrar and S. C. Koenig. Intraoperative evaluation of the HeartMate II flow estimator. J Heart Lung Transplant. 28(1):39–43, 2009.

    Article  Google Scholar 

  31. Stadler, A. and O. Linderkamp. Flow behavior of neonatal and adult erythrocytes in narrow capillaries. Microvasc. Res. 37(3):267–279, 1989.

    Article  Google Scholar 

  32. Stiller, B., C. Benk and C. Schlensak. Mechanical cardiovascular support in infants and children. Heart 97:596–602, 2011.

    Article  Google Scholar 

  33. Thompson, L. O., M. Loebe and G. P. Noon. What price support? Ventricular assist device induced systemic response. ASAIO J. 49:518–526, 2003.

    Article  Google Scholar 

  34. Thoratec Corp. HeartMate III left ventricular assist system instructions for use. Document: 10002832.C, September 2015.

  35. Thurston, G. B. Viscoelasticity of human blood. Biophys. J. 12:1205, 1972.

    Article  Google Scholar 

  36. Thurston, G. B. Erythrocyte rigidity as a factor in blood rheology: viscoelastic dilatancy. J. Rheol. 23:6:703–719, 1979.

    Article  Google Scholar 

  37. VanderPluym, C. J., F. Fynn-Thompson and E. D. Blume. Ventricular assist devices in children: progress with an orphan device application. Circulation 129:1530–1537, 2014.

    Article  Google Scholar 

  38. Walters, H. L., M. Hakimi, M. D. Rice, J. M. Lyons, G. C. Whittlesey and M. D. Klein (1995). Pediatric cardiac surgical ECMO. Ann. Thorac. Surg. 60:329–337, 1995.

    Google Scholar 

  39. Yamarat, P., C. Sanghirun, Y. Chantachum, C. Cheeramakara and W. Thanomsak. Factors influencing blood viscosity: adult and newborn flood analysis. Southeast Asian J. Trop. Med. Public Health 31(Suppl 1):75–78, 2000.

    Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to the patients who were willing to participate in this investigation and to students who provided technical assistance in the evaluation of the blood samples.

Conflict of Interest

Sharp, Gregg, Brock, Nair, Sahetya, Austin, Mascio, Slaughter, and Pantalos declare no conflicts of interest.

Funding

This project was provided by the National Institutes of Health Heart, Lung and Blood Institute (Grant 2 R44 HL059810 and Contract No. HHSN268200449189C), the Jewish Hospital & St. Mary’s Foundation (Louisville, KY), and Kosair Charities, Louisville, KY.

Human and Animal Studies

Human studies were performed in accordance with Institutional Review Board and Helsinki standards. No animals were involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keith Sharp.

Additional information

Associate Editors Keefe B. Manning and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, M.K., Gregg, M., Brock, G. et al. Comparison of Blood Viscoelasticity in Pediatric and Adult Cardiac Patients. Cardiovasc Eng Tech 8, 182–192 (2017). https://doi.org/10.1007/s13239-017-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0300-7

Keywords

Navigation